7,262 research outputs found
Recommended from our members
Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction
Carbon dioxide electroreduction in aqueous media using Cu catalysts can generate many different C2 and C3 products, which leads to the question whether all products are generated from the same types of active sites or if product-specific active sites are responsible for certain products. Here, by reducing mixtures of 13CO and 12CO2, we show that oxide-derived Cu catalysts have three different types of active sites for C–C coupled products, one that produces ethanol and acetate, another that produces ethylene and yet another that produces 1-propanol. In contrast, we do not find evidence of product-specific sites on polycrystalline Cu and oriented (100) and (111) Cu surfaces. Analysis of the isotopic composition of the products leads to the prediction that the adsorption energy of *COOH (the product of the first step of CO2 reduction) may be a descriptor for the product selectivity of a given active site. These new insights should enable highly selective catalysts to be developed
Recommended from our members
Machine Learning Optimization of p-Type Transparent Conducting Films
p-Type transparent conducting materials (p-TCMs) are important components of optoelectronic devices including solar cells, photodetectors, displays, and flexible sensors. Cu-Zn-S thin films prepared by chemical bath deposition (CBD) can have both high transparency in the visible range (>80%) as well as excellent hole conductivity (>1000 S cm-1). However, the interplay between the deposition parameters in the CBD process (metal and sulfur precursor concentrations, temperature, pH, complexing agents, etc.) creates a multidimensional parameter space such that optimization for a specific application is challenging and time-consuming. Here we show that strategic design of experiment combined with machine learning (ML) allows for the efficient optimization of p-TCM performance. The approach is guided by a figure of merit (FOM) calculated from the film conductivity and optical transmission in the desired spectral range. A specific example is shown using two steps of optimization using a selected subset of four experimental CBD factors. The ML model is based on support vector regression employing a radial basis function as the kernel function. 10-fold cross-validation was performed to mitigate overfitting. After the first round of optimization, predicted areas in the parameter space with maximal FOMs were selected for a second round of optimization. Films with optimal FOMs were incorporated into heterojunction solar cells and transparent photodiodes. The optimization approach shown here will be generally applicable to any materials synthesis process with multiple parameters
La fe y lo secular: tensiones a la hora de cumplir con los principios humanitarios
Hay una buena razón para que las organizaciones confesionales y las comunidades religiosas locales se unan a la hora de dar respuesta humanitaria, pero esto supone ciertos conflictos acerca de la interpretación de los principios humanitarios en lo que algunos consideran una época postseglar
NFER teacher voice omnibus : November 2012 Survey : Understanding union membership and activity
ab initio Electronic Transport Model with Explicit Solution to the Linearized Boltzmann Transport Equation
Accurate models of carrier transport are essential for describing the
electronic properties of semiconductor materials. To the best of our knowledge,
the current models following the framework of the Boltzmann transport equation
(BTE) either rely heavily on experimental data (i.e., semi-empirical), or
utilize simplifying assumptions, such as the constant relaxation time
approximation (BTE-cRTA). While these models offer valuable physical insights
and accurate calculations of transport properties in some cases, they often
lack sufficient accuracy -- particularly in capturing the correct trends with
temperature and carrier concentration. We present here a general transport
model for calculating low-field electrical drift mobility and Seebeck
coefficient of n-type semiconductors, by explicitly considering all relevant
physical phenomena (i.e. elastic and inelastic scattering mechanisms). We first
rewrite expressions for the rates of elastic scattering mechanisms, in terms of
ab initio properties, such as the band structure, density of states, and polar
optical phonon frequency. We then solve the linear BTE to obtain the
perturbation to the electron distribution -- resulting from the dominant
scattering mechanisms -- and use this to calculate the overall mobility and
Seebeck coefficient. Using our model, we accurately calculate electrical
transport properties of the compound n-type semiconductors, GaAs and InN, over
various ranges of temperature and carrier concentration. Our fully predictive
model provides high accuracy when compared to experimental measurements on both
GaAs and InN, and vastly outperforms both semi-empirical models and the
BTE-cRTA. Therefore, we assert that this approach represents a first step
towards a fully ab initio carrier transport model that is valid in all compound
semiconductors
High endothelial venules and other blood vessels: critical regulators of lymphoid organ development and function
The blood vasculature regulates both the development and function of secondary lymphoid organs by providing a portal for entry of hemopoietic cells. During the development of lymphoid organs in the embryo, blood vessels deliver lymphoid tissue inducer cells that initiate and sustain the development of lymphoid tissues. In adults, the blood vessels are structurally distinct from those in other organs due to the requirement for high levels of lymphocyte recruitment under non-inflammatory conditions. In lymph nodes (LNs) and Peyer’s patches, high endothelial venules (HEVs) especially adapted for lymphocyte trafficking form a spatially organized network of blood vessels, which controls both the type of lymphocyte and the site of entry into lymphoid tissues. Uniquely, HEVs express vascular addressins that regulate lymphocyte entry into lymphoid organs and are, therefore, critical to the function of lymphoid organs. Recent studies have demonstrated important roles for CD11c+ dendritic cells in the induction, as well as the maintenance, of vascular addressin expression and, therefore, the function of HEVs. Tertiary lymphoid organs (TLOs) are HEV containing LN-like structures that develop inside organized tissues undergoing chronic immune-mediated inflammation. In autoimmune lesions, the development of TLOs is thought to exacerbate disease. In cancerous tissues, the development of HEVs and TLOs is associated with improved patient outcomes in several cancers. Therefore, it is important to understand what drives the development of HEVs and TLOs and how these structures contribute to pathology. In several human diseases and experimental animal models of chronic inflammation, there are some similarities between the development and function of HEVs within LN and TLOs. This review will summarize current knowledge of how hemopoietic cells with lymphoid tissue-inducing, HEV-inducing, and HEV-maintaining properties are recruited from the bloodstream to induce the development and control the function of lymphoid organs
Recommended from our members
Research advances towards large-scale solar hydrogen production from water
Toward a culturally sensitive conceptualization of resilience: participatory research with war-affected communities in northern Uganda
Resilience research with war-affected populations has long conceptualized resilience as the absence of psychopathology and operationalized it by use of standardized measures. However, literature on resilience increasingly highlights the importance of also including indicators of positively valued functioning as well as contextually sensitive indicators of resilience. This study used a participatory approach to examine the contextual conceptualization of youth resilience in the aftermath of war in northern Uganda, as defined by groups of stakeholders (youths, parents, elders, leaders, teachers) in four communities. The results identify 40 indicators covering a multiplicity of domains of functioning. The rationales behind these indicators were clustered into the broad themes: progress, self-reliance, social connectedness, morality, health, and comfort. The findings suggest that positively and negatively valued aspects of functioning are both key to conceptualizing resilience, and indicate the importance of including contextually distinguished indicators. The findings further point to the role of individual and collective processes in the construction of resilience, and to the need to take into account the contexts wherein resilience is conceptualized and observed. This study generated contextually sensitive indicators of young people's resilience, which can be used, complementary to existing measures of functioning, to provide a more comprehensive and culturally sensitive view of youths' resilience in the wake of war adversity
Litigation Efects of Scheduling Awards for Personal Injury. Who Should Decide What I Get Paid?
- …
