42 research outputs found

    Pore-scale processes in tertiary low salinity waterflooding in a carbonate rock: Micro-dispersions, water film growth, and wettability change

    Get PDF
    HYPOTHESIS: The wettability change from oil-wet towards more water-wet conditions by injecting diluted brine can improve oil recovery from reservoir rocks, known as low salinity waterflooding. We investigated the underlying pore-scale mechanisms of this process to determine if improved recovery was associated with a change in local contact angle, and if additional displacement was facilitated by the formation of micro-dispersions of water in oil and water film swelling. EXPERIMENTS: X-ray imaging and high-pressure and temperature flow apparatus were used to investigate and compare high and low salinity waterflooding in a carbonate rock sample. The sample was placed in contact with crude oil to obtain an initial wetting state found in hydrocarbon reservoirs. High salinity brine was then injected at increasing flow rates followed by low salinity brine injection using the same procedure. FINDINGS: Development of water micro-droplets within the oil phase and detachment of oil layers from the rock surface were observed after low salinity waterflooding. During high salinity waterflooding, contact angles showed insignificant changes from the initial value of 115°, while the mean curvature and local capillary pressure values remained negative, consistent with oil-wet conditions. However, with low salinity, the decrease in contact angle to 102° and the shift in the mean curvature and capillary pressure to positive values indicate a wettability change. Overall, our analysis captured the in situ mechanisms and processes associated with the low salinity effect and ultimate increase in oil recovery

    Zeta potential in intact carbonates at reservoir conditions and its impact on oil recovery during controlled salinity waterflooding

    Get PDF
    It is well known that oil recovery from carbonate reservoirs can be increased by modifying the injected brine composition in a process ‘controlled salinity water-flooding’ (CSW). However, the mineral- to pore- scale processes responsible for improved oil recovery (IOR) during CSW remain ambiguous and there is no method to predict the optimum CSW composition for a given crude-oil-brine rock system. Here we report the first integrated experimental measurements of zeta potential and IOR during CSW obtained at reservoir conditions. The zeta potential is a measure of the electrical potential at mineral-brine and oil-brine interfaces and controls the electrostatic forces acting between these interfaces. We find that the measured zeta potential in clean samples saturated with formation brine is typically positive and becomes more negative with brine dilution irrespective of temperature. After aging and wettability alteration, the zeta potential changes and we suggest a more positive zeta potential indicates a positive zeta potential at the oil-brine interface and vice-versa. Injecting low salinity brine yields IOR when the oil-brine zeta potential is identified to be negative, but no response when it is identified to be positive, consistent with the hypothesis that IOR during CSW is caused by an increase in the repulsive electrostatic force acting between mineral-brine and oil-brine interfaces. We suggest that the optimum brine composition for IOR during CSW should be chosen to yield the largest change in zeta potential at the mineral-brine interface with opposing polarity to the oil-brine interface and can be determined using the experimental method reported here

    Pore-scale imaging and analysis of low salinity waterflooding in a heterogeneous carbonate rock at reservoir conditions

    Get PDF
    X-ray micro-tomography combined with a high-pressure high-temperature flow apparatus and advanced image analysis techniques were used to image and study fluid distribution, wetting states and oil recovery during low salinity waterflooding (LSW) in a complex carbonate rock at subsurface conditions. The sample, aged with crude oil, was flooded with low salinity brine with a series of increasing flow rates, eventually recovering 85% of the oil initially in place in the resolved porosity. The pore and throat occupancy analysis revealed a change in fluid distribution in the pore space for different injection rates. Low salinity brine initially invaded large pores, consistent with displacement in an oil-wet rock. However, as more brine was injected, a redistribution of fluids was observed; smaller pores and throats were invaded by brine and the displaced oil moved into larger pore elements. Furthermore, in situ contact angles and curvatures of oil–brine interfaces were measured to characterize wettability changes within the pore space and calculate capillary pressure. Contact angles, mean curvatures and capillary pressures all showed a shift from weakly oil-wet towards a mixed-wet state as more pore volumes of low salinity brine were injected into the sample. Overall, this study establishes a methodology to characterize and quantify wettability changes at the pore scale which appears to be the dominant mechanism for oil recovery by LSW

    Trace elements in hemodialysis patients: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemodialysis patients are at risk for deficiency of essential trace elements and excess of toxic trace elements, both of which can affect health. We conducted a systematic review to summarize existing literature on trace element status in hemodialysis patients.</p> <p>Methods</p> <p>All studies which reported relevant data for chronic hemodialysis patients and a healthy control population were eligible, regardless of language or publication status. We included studies which measured at least one of the following elements in whole blood, serum, or plasma: antimony, arsenic, boron, cadmium, chromium, cobalt, copper, fluorine, iodine, lead, manganese, mercury, molybdenum, nickel, selenium, tellurium, thallium, vanadium, and zinc. We calculated differences between hemodialysis patients and controls using the differences in mean trace element level, divided by the pooled standard deviation.</p> <p>Results</p> <p>We identified 128 eligible studies. Available data suggested that levels of cadmium, chromium, copper, lead, and vanadium were higher and that levels of selenium, zinc and manganese were lower in hemodialysis patients, compared with controls. Pooled standard mean differences exceeded 0.8 standard deviation units (a large difference) higher than controls for cadmium, chromium, vanadium, and lower than controls for selenium, zinc, and manganese. No studies reported data on antimony, iodine, tellurium, and thallium concentrations.</p> <p>Conclusion</p> <p>Average blood levels of biologically important trace elements were substantially different in hemodialysis patients, compared with healthy controls. Since both deficiency and excess of trace elements are potentially harmful yet amenable to therapy, the hypothesis that trace element status influences the risk of adverse clinical outcomes is worthy of investigation.</p
    corecore