12 research outputs found

    Early Identification of Patients at Risk of Cabazitaxel-induced Severe Neutropenia

    Get PDF
    BACKGROUND: Cabazitaxel frequently causes severe neutropenia. A higher cabazitaxel systemic exposure is related to a lower nadir absolute neutrophil count (ANC).OBJECTIVE: To describe the effect of cabazitaxel systemic exposure on ANC by a population pharmacokinetic/pharmacodynamic (POP-PK/PD) model, and to identify patients at risk of severe neutropenia early in their treatment course using a PK threshold.DESIGN, SETTING, AND PARTICIPANTS: Data from five clinical studies were pooled to develop a POP-PK/PD model using NONMEM, linking both patient characteristics and cabazitaxel systemic exposure directly to ANC.OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: A PK threshold, predictive of severe neutropenia (grade ≥3), was determined using a receiver operating characteristic curve.RESULTS AND LIMITATIONS: Ninety-six patients were included with a total of 1726 PK samples and 1081 ANCs. The POP-PK/PD model described both cabazitaxel PK and ANC accurately. A cabazitaxel plasma concentration of &gt;4.96 ng/ml at 6 h after the start of infusion was found to be predictive of severe neutropenia, with a sensitivity of 76% and a specificity of 65%.CONCLUSIONS: Early cabazitaxel plasma levels are predictive of severe neutropenia. Implementation of the proposed PK threshold results in early identification of almost 76% of all severe neutropenias. If prospectively validated, patients at risk could benefit from prophylactic administration of granulocyte colony stimulating factors, preventing severe neutropenia in an early phase of treatment. Implementation of this threshold permits a less restricted use of the 25 mg/m2 dose, potentially increasing the therapeutic benefit.PATIENT SUMMARY: Treatment with cabazitaxel chemotherapy often causes neutropenia, leading to susceptibility to infections, which might be life threatening. We found that a systemic cabazitaxel concentration above 4.96 ng/ml 6 h after the start of infusion is predictive of the occurrence of severe neutropenia. Measurement of systemic cabazitaxel levels provides clinicians with the opportunity to prophylactically stimulate neutrophil growth.</p

    The influence of single-nucleotide polymorphisms on overall survival and toxicity in cabazitaxel-treated patients with metastatic castration-resistant prostate cancer

    Get PDF
    Purpose: Cabazitaxel, used in patients with metastatic castration-resistant prostate cancer (mCRPC), is associated with adverse events which may require dose reductions or discontinuation of treatment. We investigated the potential association of single-nucleotide polymorphisms (SNPs) in genes encoding drug transporters and drug-metabolizing enzymes with cabazitaxel toxicity, overall survival (OS) and pharmacokinetics (PK). Methods: A total of 128 cabazitaxel-treated mCRPC patients, of whom prospectively collected data on toxicity and OS were available and 24 mCRPC patients with available cabazitaxel PK measurements, were genotyped using genomic DNA obtained from EDTA blood. The SLCO1B1 (388A > G; *1B; rs2306283 and 521 T > C; *5; rs4149056 and haplotype SLCO1B1*15), SLCO1B3 (334 T > G; rs4149117), CYP3A4 (*22; rs35599367), CYP3A5 (*3; rs776746), ABCB1 (3435C > T; rs1045642), and TUBB1 (57 + 87A > C; rs463312) SNPs were tested for their association with clinical and PK parameters by univariate/multivariate logistic regression, log-rank test, or Kruskal–Wallis test. Results: The SLCO1B1*15 haplotype was significantly associated with a lower incidence of leukopenia and neutropenia (p = 0.020 and p = 0.028, respectively). Patients harboring a homozygous variant for SLCO1B1*1B experienced higher rate ≥ grade 3 (p = 0.042). None of the SNPs were associated with pharmacokinetics or OS. Conclusions: In this study, SLCO1B1 (SLCO1B1*15 and SLCO1B1*1B) was associated with cabazitaxel-induced adverse events in mCRPC patients. As the associations were opposite to previous studies in other drugs and contradicted an underlying pharmacokinetic rationale, these findings are likely to be false-positive and would ideally be validated with even larger (pharmacokinetic) cohorts

    Influence of genetic variation in COMT on cisplatin-induced nephrotoxicity in cancer patients

    Get PDF
    Cisplatin is a chemotherapeutic agent widely used for multiple indications. Unfortunately, in a substantial set of patients treated with cisplatin, dose-limiting acute kidney injury (AKI) occurs. Here, we assessed the association of 3 catechol-O-methyltransferase (COMT) single nucleotide polymorphisms (SNPs) with increased cisplatin-induced nephrotoxicity. In total, 551 patients were genotyped for the 1947 G>A (Val158Met, rs4680), c.615 + 310 C>T (rs4646316), and c.616 – 367 C>T (rs9332377) polymorphisms. Associations between these variants and AKI grade ≥3 were studied. The presence of a homozygous variant of c.616-367C>T was associated with a decreased occurrence of AKI grade 3 toxicity (p = 0.014, odds ratio (OR) 0.201, 95% confidence interval (CI) (0.047–0.861)). However, we could not exclude the role of dehydration as a potential cause of AKI in 25 of the 27 patients with AKI grade 3, which potentially affected the results substantially. As a result of the low incidence of AKI grade 3 in this dataset, the lack of patients with a COMT variant, and the high number of patients with dehydration, the association between COMT variants and AKI does not seem clinically relevant

    Early Identification of Patients at Risk of Cabazitaxel-induced Severe Neutropenia

    Get PDF
    BACKGROUND: Cabazitaxel frequently causes severe neutropenia. A higher cabazitaxel systemic exposure is related to a lower nadir absolute neutrophil count (ANC).OBJECTIVE: To describe the effect of cabazitaxel systemic exposure on ANC by a population pharmacokinetic/pharmacodynamic (POP-PK/PD) model, and to identify patients at risk of severe neutropenia early in their treatment course using a PK threshold.DESIGN, SETTING, AND PARTICIPANTS: Data from five clinical studies were pooled to develop a POP-PK/PD model using NONMEM, linking both patient characteristics and cabazitaxel systemic exposure directly to ANC.OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: A PK threshold, predictive of severe neutropenia (grade ≥3), was determined using a receiver operating characteristic curve.RESULTS AND LIMITATIONS: Ninety-six patients were included with a total of 1726 PK samples and 1081 ANCs. The POP-PK/PD model described both cabazitaxel PK and ANC accurately. A cabazitaxel plasma concentration of &gt;4.96 ng/ml at 6 h after the start of infusion was found to be predictive of severe neutropenia, with a sensitivity of 76% and a specificity of 65%.CONCLUSIONS: Early cabazitaxel plasma levels are predictive of severe neutropenia. Implementation of the proposed PK threshold results in early identification of almost 76% of all severe neutropenias. If prospectively validated, patients at risk could benefit from prophylactic administration of granulocyte colony stimulating factors, preventing severe neutropenia in an early phase of treatment. Implementation of this threshold permits a less restricted use of the 25 mg/m2 dose, potentially increasing the therapeutic benefit.PATIENT SUMMARY: Treatment with cabazitaxel chemotherapy often causes neutropenia, leading to susceptibility to infections, which might be life threatening. We found that a systemic cabazitaxel concentration above 4.96 ng/ml 6 h after the start of infusion is predictive of the occurrence of severe neutropenia. Measurement of systemic cabazitaxel levels provides clinicians with the opportunity to prophylactically stimulate neutrophil growth.</p

    Population pharmacokinetics of oxycodone and metabolites in patients with cancer‐related pain

    Get PDF
    Oxycodone is frequently used for treating cancer‐related pain, while not much is known about the factors that influence treatment outcomes in these patients. We aim to unravel these factors by developing a population‐pharmacokinetic model to assess the pharmacokinetics of oxycodone and its metabolites in cancer patients, and to associate this with pain scores, and adverse events. Hospitalized patients with cancer‐related pain, who were treated with oral oxycodone, could participate. Pharmacokinetic samples and patient‐reported pain scores and occurrence and severity of nine adverse events were taken every 12 h. In 28 patients, 302 pharmacokinetic samples were collected. A one‐compartment model for oxycodone and each metabolite best described oxycodone, nor‐oxycodone, and nor‐oxymorphone pharmacokinetics. Furthermore, oxycodone exposure was not associated with average and maximal pain scores, and oxycodone, nor-oxycodone, and nor‐oxymorphone exposure were not associated with adverse events (all p > 0.05). This is the first model to describe the pharmacokinetics of oxycodone including the metabolites nor-oxycodone and nor‐oxymorphone in hospitalized patients with cancer pain. Additional research, including more patients and a more timely collection of pharmacodynamic data, is needed to further elucidate oxycodone (metabolite) pharmacokinetic/pharmacodynamic relationships. This model is an important starting point for further studies to optimize oxycodone dosing regiments in patients with cancer‐related pain

    Improving the tolerability of osimertinib by identifying its toxic limit

    Get PDF
    Background: Osimertinib is the cornerstone in the treatment of epidermal growth factor receptor-mutated non-small cell lung cancer (NSCLC). Nonetheless, ±25% of patients experience severe treatment-related toxicities. Currently, it is impossible to identify patients at risk of severe toxicity beforehand. Therefore, we aimed to study the relationship between osimertinib exposure and severe toxicity and to identify a safe toxic limit for a preventive dose reduction. Methods: In this real-life prospective cohort study, patients with NSCLC treated with osimertinib were followed for severe toxicity (grade ⩾3 toxicity, dose reduction or discontinuation, hospital admission, or treatment termination). Blood for pharmacokinetic analyses was withdrawn during every out-patient visit. Primary endpoint was the correlation between osimertinib clearance (exposure) and severe toxicity. Secondary endpoint was the exposure–efficacy relationship, defined as progression-free survival (PFS) and overall survival (OS). Results: In total, 819 samples from 159 patients were included in the analysis. Multivariate competing risk analysis showed osimertinib clearance (c.q. exposure) to be significantly correlated with severe toxicity (hazard ratio 0.93, 95% CI: 0.88–0.99). An relative operating characteristic curve showed the optimal toxic limit to be 259 ng/mL osimertinib. A 50% dose reduction in the high-exposure group, that is 25.8% of the total cohort, would reduce the risk of severe toxicity by 53%. Osimertinib exposure was not associated with PFS nor OS. Conclusion: Osimertinib exposure is highly correlated with the occurrence of severe toxicity. To optimize tolerability, patients above the toxic limit concentration of 259 ng/mL could benefit from a preventive dose reduction, without fear for diminished effectiveness

    Influence of Genetic Variation in COMT on Cisplatin-Induced Nephrotoxicity in Cancer Patients

    No full text
    Cisplatin is a chemotherapeutic agent widely used for multiple indications. Unfortunately, in a substantial set of patients treated with cisplatin, dose-limiting acute kidney injury (AKI) occurs. Here, we assessed the association of 3 catechol-O-methyltransferase (COMT) single nucleotide polymorphisms (SNPs) with increased cisplatin-induced nephrotoxicity. In total, 551 patients were genotyped for the 1947 G&gt;A (Val158Met, rs4680), c.615 + 310 C&gt;T (rs4646316), and c.616&ndash;367 C&gt;T (rs9332377) polymorphisms. Associations between these variants and AKI grade &ge;3 were studied. The presence of a homozygous variant of c.616-367C&gt;T was associated with a decreased occurrence of AKI grade 3 toxicity (p = 0.014, odds ratio (OR) 0.201, 95% confidence interval (CI) (0.047&ndash;0.861)). However, we could not exclude the role of dehydration as a potential cause of AKI in 25 of the 27 patients with AKI grade 3, which potentially affected the results substantially. As a result of the low incidence of AKI grade 3 in this dataset, the lack of patients with a COMT variant, and the high number of patients with dehydration, the association between COMT variants and AKI does not seem clinically relevant

    Toward model-informed precision dosing for tamoxifen: A population-pharmacokinetic model with a continuous CYP2D6 activity scale

    No full text
    BACKGROUND: Tamoxifen is important in the adjuvant treatment of breast cancer. A plasma concentration of the active metabolite endoxifen of > 16 nM is associated with a lower risk of breast cancer-recurrence. Since inter-individual variability is high and > 20 % of patients do not reach endoxifen levels > 16 nM with the standard dose tamoxifen, therapeutic drug monitoring is advised. However, ideally, the correct tamoxifen dose should be known prior to start of therapy. Our aim is to develop a population pharmacokinetic (POP-PK) model incorporating a continuous CYP2D6 activity scale to support model informed precision dosing (MIPD) of tamoxifen to determine the optimal tamoxifen starting dose. METHODS: Data from eight different clinical studies were pooled (539 patients, 3661 samples) and used to develop a POP-PK model. In this model, CYP2D6 activity per allele was estimated on a continuous scale. After inclusion of covariates, the model was subsequently validated using an independent external dataset (378 patients). Thereafter, dosing cut-off values for MIPD were determined. RESULTS: A joint tamoxifen/endoxifen POP-PK model was developed describing the endoxifen formation rate. Using a continuous CYP2D6 activity scale, variability in predicting endoxifen levels was decreased by 37 % compared to using standard CYP2D6 genotype predicted phenotyping. After external validation and determination of dosing cut-off points, MIPD could reduce the proportion of patients with subtherapeutic endoxifen levels at from 22.1 % toward 4.8 %. CONCLUSION: Implementing MIPD from the start of tamoxifen treatment with this POP-PK model can reduce the proportion of patients with subtherapeutic endoxifen levels at steady-state to less than 5 %

    Improving the tolerability of osimertinib by identifying its toxic limit

    No full text
    Background:Osimertinib is the cornerstone in the treatment of epidermal growth factor receptor-mutated non-small cell lung cancer (NSCLC). Nonetheless, ±25% of patients experience severe treatment-related toxicities. Currently, it is impossible to identify patients at risk of severe toxicity beforehand. Therefore, we aimed to study the relationship between osimertinib exposure and severe toxicity and to identify a safe toxic limit for a preventive dose reduction.Methods:In this real-life prospective cohort study, patients with NSCLC treated with osimertinib were followed for severe toxicity (grade ⩾3 toxicity, dose reduction or discontinuation, hospital admission, or treatment termination). Blood for pharmacokinetic analyses was withdrawn during every out-patient visit. Primary endpoint was the correlation between osimertinib clearance (exposure) and severe toxicity. Secondary endpoint was the exposure–efficacy relationship, defined as progression-free survival (PFS) and overall survival (OS).Results:In total, 819 samples from 159 patients were included in the analysis. Multivariate competing risk analysis showed osimertinib clearance (c.q. exposure) to be significantly correlated with severe toxicity (hazard ratio 0.93, 95% CI: 0.88–0.99). An relative operating characteristic curve showed the optimal toxic limit to be 259 ng/mL osimertinib. A 50% dose reduction in the high-exposure group, that is 25.8% of the total cohort, would reduce the risk of severe toxicity by 53%. Osimertinib exposure was not associated with PFS nor OS.Conclusion:Osimertinib exposure is highly correlated with the occurrence of severe toxicity. To optimize tolerability, patients above the toxic limit concentration of 259 ng/mL could benefit from a preventive dose reduction, without fear for diminished effectiveness
    corecore