2 research outputs found

    Comparative efficacy of two pyrethroid-piperonyl butoxide nets (Olyset Plus and PermaNet 3.0) against pyrethroid resistant malaria vectors: a non-inferiority assessment

    Get PDF
    Background Pyrethroid-PBO nets were conditionally recommended for control of malaria transmitted by mosquitoes with oxidase-based pyrethroid-resistance based on epidemiological evidence of additional protective effect with Olyset Plus compared to a pyrethroid-only net (Olyset Net). Entomological studies can be used to assess the comparative performance of other brands of pyrethroid-PBO ITNs to Olyset Plus. Methods An experimental hut trial was performed in Cové, Benin to compare PermaNet 3.0 (deltamethrin plus PBO on roof panel only) to Olyset Plus (permethrin plus PBO on all panels) against wild pyrethroid-resistant Anopheles gambiae sensu lato (s.l.) following World Health Organization (WHO) guidelines. Both nets were tested unwashed and after 20 standardized washes compared to Olyset Net. Laboratory bioassays were also performed to help explain findings in the experimental huts. Results With unwashed nets, mosquito mortality was higher in huts with PermaNet 3.0 compared to Olyset Plus (41% vs. 28%, P < 0.001). After 20 washes, mortality declined significantly with PermaNet 3.0 (41% unwashed vs. 17% after washing P < 0.001), but not with Olyset Plus (28% unwashed vs. 24% after washing P = 0.433); Olyset Plus induced significantly higher mortality than PermaNet 3.0 and Olyset Net after 20 washes. PermaNet 3.0 showed a higher wash retention of PBO compared to Olyset Plus. A non-inferiority analysis performed with data from unwashed and washed nets together using a margin recommended by the WHO, showed that PermaNet 3.0 was non-inferior to Olyset Plus in terms of mosquito mortality (25% with Olyset Plus vs. 27% with PermaNet 3.0, OR = 1.528, 95%CI = 1.02–2.29) but not in reducing mosquito feeding (25% with Olyset Plus vs. 30% with PermaNet 3.0, OR = 1.192, 95%CI = 0.77–1.84). Both pyrethroid-PBO nets were superior to Olyset Net. Conclusion Olyset Plus outperformed PermaNet 3.0 in terms of its ability to cause greater margins of improved mosquito mortality compared to a standard pyrethroid net, after multiple standardized washes. However, using a margin of non-inferiority defined by the WHO, PermaNet 3.0 was non-inferior to Olyset Plus in inducing mosquito mortality. Considering the low levels of mortality observed and increasing pyrethroid-resistance in West Africa, it is unclear whether either of these nets would demonstrate the same epidemiological impact observed in community trials in East Africa

    Field Durability of &amp;lt;i&amp;gt;Yorkool&amp;lt;sup&amp;gt;&amp;#174;&amp;lt;/sup&amp;gt;LN&amp;lt;/i&amp;gt; Nets in the Benin Republic

    Get PDF
    CONTEXT: Recent publications on WHO recommended methods for estimating the survival of LLINs are good guidelines for assessing the performance of long-lasting insecticidal nets (LLINs). Thus, this field trial study was undertaken to evaluate the durability of the Yorkool® LN mosquito net distributed during the 2017 campaign in Benin. METHODS: The monitoring of Yorkool® LN nets was carried out in two districts (Djougou III and Barienou) in Djougou, department of Donga, northern Benin from October 2017 to March 2019. A representative sample of 250 households that had received the Yorkool® LN polyester LLINs during the 2017 campaign was selected in the rural and urban areas of each district and monitored for 6, 12 and 18 months. An evaluation of the survival of Yorkool® LN nets was conducted based on the rate of loss and physical condition of the surviving nets as measured by the proportional hole index (pHI). Finally, the chemical efficacy of these LLINs during each period was determined using the WHO cone tests. RESULTS: Survival of Yorkool® LN nets was similar in both rural and urban areas, although there was a difference in survival between the 6-month (95.3%), 12-month (89.7%), and 18-month follow-up periods (74.4%). A difference in survival was also observed between the NetCalc model (84%) compared to the Yorkool® LN nets of this study (74.4%). The attrition rate was 29.6% for LLINs at 18 months. Surprisingly, the physical integrity of the LLINs was minimally affected in the municipality. Indeed, the proportion of mosquito nets in good condition without a hole was 51.8% compared to 56.8% with a hole after 18 months. Only 7.8% of the LLINs in the two districts were damaged compared to 2.6% which needed to be replaced. The washing frequency, location of the LLINs and the frequency of use are some factors contributing to the appearance of the holes in LLINs. The bio-efficacy results of LLINs based on the cone test were good with mortality rates of 74%, 66%, 72% and 58% respectively after baseline, 6, 12 and 18 months of use. CONCLUSIONS: The observed differences in the survival of Yorkool® LN nets are due to community living conditions and movements and not to the equipment used to manufacture LLINs. However, the estimated median survival has shown that Yorkool® LN nets would have an average lifespan of 2 years 8 months despite their fairly good physical condition. These results may be useful to the National Malaria Control Program (NMCP) during the period of replacement of these nets on the field
    corecore