3 research outputs found
An automated slide scanning system for membrane filter imaging in diagnosis of urogenital schistosomiasis
Traditionally, automated slide scanning involves capturing a rectangular grid of field-of-view (FoV) images which can be stitched together to create whole slide images, while the autofocusing algorithm captures a focal stack of images to determine the best in-focus image. However, these methods can be time-consuming due to the need for X-, Y- and Z-axis movements of the digital microscope while capturing multiple FoV images. In this paper, we propose a solution to minimise these redundancies by presenting an optimal procedure for automated slide scanning of circular membrane filters on a glass slide. We achieve this by following an optimal path in the sample plane, ensuring that only FoVs overlapping the filter membrane are captured. To capture the best in-focus FoV image, we utilise a hill-climbing approach that tracks the peak of the mean of Gaussian gradient of the captured FoVs images along the Z-axis. We implemented this procedure to optimise the efficiency of the Schistoscope, an automated digital microscope developed to diagnose urogenital schistosomiasis by imaging Schistosoma haematobium eggs on 13 or 25 mm membrane filters. Our improved method reduces the automated slide scanning time by 63.18% and 72.52% for the respective filter sizes. This advancement greatly supports the practicality of the Schistoscope in large-scale schistosomiasis monitoring and evaluation programs in endemic regions. This will save time, resources and also accelerate generation of data that is critical in achieving the targets for schistosomiasis elimination
Two-stage automated diagnosis framework for urogenital schistosomiasis in microscopy images from low-resource settings
Purpose
Automated diagnosis of urogenital schistosomiasis using digital microscopy images of urine slides is an essential step toward the elimination of schistosomiasis as a disease of public health concern in Sub-Saharan African countries. We create a robust image dataset of urine samples obtained from field settings and develop a two-stage diagnosis framework for urogenital schistosomiasis.
Approach
Urine samples obtained from field settings were captured using the Schistoscope device, and S. haematobium eggs present in the images were manually annotated by experts to create the SH dataset. Next, we develop a two-stage diagnosis framework, which consists of semantic segmentation of S. haematobium eggs using the DeepLabv3-MobileNetV3 deep convolutional neural network and a refined segmentation step using ellipse fitting approach to approximate the eggs with an automatically determined number of ellipses. We defined two linear inequality constraints as a function of the overlap coefficient and area of a fitted ellipses. False positive diagnosis resulting from over-segmentation was further minimized using these constraints. We evaluated the performance of our framework on 7605 images from 65 independent urine samples collected from field settings in Nigeria, by deploying our algorithm on an Edge AI system consisting of Raspberry Pi + Coral USB accelerator.
Result
The SH dataset contains 12,051 images from 103 independent urine samples and the developed urogenital schistosomiasis diagnosis framework achieved clinical sensitivity, specificity, and precision of 93.8%, 93.9%, and 93.8%, respectively, using results from an experienced microscopist as reference.
Conclusion
Our detection framework is a promising tool for the diagnosis of urogenital schistosomiasis as our results meet the World Health Organization target product profile requirements for monitoring and evaluation of schistosomiasis control programs