6 research outputs found
The Japanese space gravitational wave antenna; DECIGO
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future
Japanese space gravitational wave antenna. DECIGO is expected to open a new window of
observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing
various mysteries of the universe such as dark energy, formation mechanism of supermassive
black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of
three drag-free spacecraft, whose relative displacements are measured by a differential Fabry–
Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-
DECIGO first and finally DECIGO in 2024
Demonstration for a two-axis interferometric tilt sensor in KAGRA
Recently, a folded Mach–Zehnder interferometer with homodyne in- and quadrature-phase detection was proposed as a high-precision, wide-dynamic range tilt sensor. By way of a practical application and to validate actual performance, two-axis tilt sensors were developed and installed for one mirror of the input mode cleaner cavity in KAGRA, the large-scale cryogenic gravitational-wave telescope in Kamioka, Gifu, Japan. Building on previous work, we have demonstrated that the two-axis tilt sensor has properly sensed the tilt angle changes of the mirror motion with high precision and without calibration. Compared with our initial angular sensor, an optical lever, which is calibrated by using the interferometer tilt sensor, we found that both sensors showed actual tilt motions of the mirror at low frequencies, and the two-axis interferometer sensor has a better sensitivity at higher frequencies
The Japanese space gravitational wave antenna---DECIGO
International audienceDECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. It aims at detecting various kinds of gravitational waves between 1 mHz and 100 Hz frequently enough to open a new window of observation for gravitational wave astronomy. The pre-conceptual design of DECIGO consists of three drag-free satellites, 1000 km apart from each other, whose relative displacements are measured by a Fabry-Perot Michelson interferometer. We plan to launch DECIGO in 2024 after a long and intense development phase, including two pathfinder missions for verification of required technologies