14 research outputs found

    Liquid film formation: prediction accuracy of different numerical approaches

    Get PDF
    In counteracting fouling phenomenon in gas turbines, which leads to system inefficiencies and performance degradation, water washing technique is very often adopted. Water droplets sprays are injected and, hitting the solid surfaces, remove the dirt deposition. Among the collateral undesirable phenomena related to water washing, blades erosion and liquid film formation are the most remarkable. Despite the former issue was extensively assessed by the authors in previous works, up to the authors' knowledge the risk of liquid film formation due to water washing was scarcely investigated. Liquid film formation and spreading on a solid surface is a complex phenomenon involving a large number of physical events, such as: droplets impact on a solid surface, splashing phenomena, liquid film dragging under the effect of the carrier phase and droplets separation from the film in proximity of geometry discontinuities. In this paper, an extensively used experimental test case involving all these phenomena was used to test different numerical wall film models available in literature. The test case consists in the injection of a liquid jet in a high velocity crossflow. Some of the liquid jet mass impacts on the opposite solid surface generating a wall film which develops under the dragging effect of the crossflow. A Lagrangian approach was used to track the suspended droplets within the flow field by also considering the turbulent dispersion by means of a Random Walk model. Droplets-wall interaction is considered according to the Stanton-Rutland model, which provides the outcome of a collision (deposit, rebound or splashing), depending on the local impact conditions. If a droplet sticks on a solid boundary, a liquid film generates. Droplets atomization is also accounted for by using the Madabhushi model while Friederich separation model was selected to take into account the detachment of droplets from the film at the geometry edge. Three different numerical simulations have been performed based on different approaches used to solve the liquid film evolution, namely Eulerian one-way coupling, Eulerian two-way coupling and Lagrangian two-way coupling. Numerical results have been compared with the experimental ones from both a qualitative and a quantitative point of view. The wall film shape, its spatial distribution and the variation of the film thickness of the wall centreline have been compared between experimental and numerical simulations proving that the Lagrangian 2-way coupling approach better reproduces the liquid film dynamics observed in the experiments

    Syngas quality in fluidized bed gasification of biomass: comparison between olivine and K-feldspar as bed materials

    Get PDF
    The relevance of selecting an appropriate bed material in fluidized bed gasification is a crucial aspect that is often underestimated. The ideal material should be economical, resistant to high temperatures and have small chemical interaction with biomass. However, often only the first of such three aspects is considered, neglecting the biomass–bed interaction effects that develop at high temperatures. In this work, olivine and K-feldspar were upscale-tested in a prototype fluidized bed gasifier (FBG) using arboreal biomass (almond shells). The produced syngas in the two different tests was characterized and compared in terms of composition (H2, CH4, CO, CO2, O2) and fate of contaminants such as volatile organic compounds (VOCs), tar and metals.. Moreover, the composition of olivine and K-feldspar before and after the biomass gasification process has been characterized. The aim of this work is to show which advantages and disadvantages there are in choosing the most suitable material and to optimize the biomass gasification process by reducing the undesirable effects, such as heavy metal production, bed agglomeration and tar production, which are harmful when syngas is used in internal combustion engines (ICE). It has been observed that metals, such as Ni, Cu, Zn, Cd, Sn, Ba and Pb, have higher concentrations in the syngas produced by using olivine as bed material rather than K-feldspar. In particular, heavy metals, such as Pb, Cu, Cd, Ni and Zn, show concentrations of 61.06 mg/Nm3, 15.29 mg/Nm3, 17.97 mg/Nm3, 37.29 mg/Nm3 and 116.39 mg/Nm3, respectively, compared to 23.26 mg/Nm3, 11.82 mg/Nm3, 2.76 mg/Nm3, 24.46 mg/Nm3 and 53.07 mg/Nm3 detected with K-feldspar. Moreover, a more hydrogen-rich syngas when using K-feldspar was produced (46% compared to 39% with olivine)

    An innovative approach to model temperature influence on particle deposition in gas turbines

    No full text
    The mechanism of deposit formation on the blade surfaces of a cooled turbine vane is investigated numerically. The prediction of dispersed particles trajectories is affected by temperature, by the mechanics of impact on a solid surface, and by the interaction between particles and film cooling jets and all these aspects must be accounted for. The model here proposed is obtained as a high temperature extension of the well-known Thornton and Ning (1998) approach in a temperature interval ranging between 500 K (where basic model - based on an elastic-plastic impact mechanism assumption -holds) and 1500 K (where the critical viscosity model of Walsh et al., 1990 is usually employed). The transition between the two extreme conditions is modelled through a temperature-driven modification of the mechanical properties of both particles and target surfaces. Our computations demonstrate that the updated model is able to return credible predictions of deposit formation when compared with the baseline models of Thornton and Ning and of Walsh and co-authors. Moreover in the region where particles bounce off, the model predict the coefficient of restitution according to the actual mechanical properties of particles, thus providing a better particle dynamics description than in both the critical viscosity and original Thornton and Ning models

    Cavitation assessment on a model scale tidal turbine

    No full text
    In this paper the inception of cavitation occurrence on a model scale tidal turbine is evaluated by means of numerical simulations. Cavitation is assessed implementing the Singhal et al. model, based on the use of the Rayleigh-Plesset equation for bubble dynamics description. For this purpose, Reynolds Averaged Navier Stokes (RANS) simulations are carried out. Results are evaluated after a validation campaign of the cavitation model was conducted on a NACA 66 (mod) hydrofoil profile. The experimental pressure coefficients evaluated on the NACA 66 (mod) suction side are compared with those computed from time averaged computational fluid dynamics (CFD) solutions. The model scale tidal turbine domain is then validated comparing the experimental and the computational power and thrust coefficients. The cavitating risk is finally highlighted by showing vapour entities formation when the inflow and the rotating velocities are sensible increased

    Development and validation of a cavitation erosion model

    No full text
    Cavitation erosion is a major issue in the working life of hydraulic turbomachines. Vapour formation and bubbles’ implosions can lead to the damage of the solid boundaries, provoking performance losses and fatigue failure over time. This paper aims at validating a new approach of cavitation erosion prediction, reproducing a circular sector of the stainless-steel nozzle used in the experiment of J. P. Franc1. The Singhal et al. Full Cavitation Model2, based on the bubble dynamics treatment, is implemented in conjunction with the k-omega SST turbulence model within Ansys Fluent. Bubbles detached from the cavitation cloud collapse close to the solid surfaces, whenever the static pressure of the target plate is higher than the vapour pressure. In the ultimate life stage of an imploding bubble, a microjet is formed; subsequently the jet may impact on the solid boundaries of a working machine. If the microjet velocity overcomes the material critical velocity, a function of the material yield strength, a permanent deformation finally occurs. The developed cavitation erosion model accounts for the number of implosions in the unit volume, giving different importance to the erosive mechanisms, according to the amount of vapour collapsed in the target plate cells. Time averaged results of the numerical simulations are compared against the nozzle experimental results, displaying the cavitation erosion mid-line annular locations

    Numerical simulation of a particle-laden impinging jet: Effect of wall curvature on particle deposition

    No full text
    Jet impingement against surfaces is uses in several industrial applications, including the internal cooling of turbine blades. Coolant used for blade cooling is air bleed from a compressor and is laden with particles. A numerical simulation of a particle-laden impinging jet is here proposed, aiming at studying and analysing the effect of surface curvature on flow field, particle motion and deposit formation. To this aim, an impinging jet on a flat and a curved walls is considered. Flow motion is be solved using Direct Numerical Simulation, thus no additional model is needed for turbulence effect on particle motion. Results show that the deposit patterns follow some secondary flow structure, showing a series of peaks forming according to those structures. The peaks are present in both the main orthogonal direction of the jet, but they are not symmetrical due to surface curvature

    Water washing of axial flow compressors: numerical study on the fate of injected droplets

    No full text
    In turbomachinery applications blade fouling represents a main cause of performance degradation. Among the different techniques currently available, online water washing is one of the most effective in removing deposit from the blades. Since this kind of washing is applied when the machine is close to design conditions, injected droplets are strongly accelerated when they reach the rotor blades and the understanding of their interaction with the blades is not straightforward. Moreover, undesirable phenomena like blades erosion or liquid film formation can occur. The present study aims at assessing droplets dragging from the injection system placed at the compressor inlet till the first stage rotor blades, with a focus on droplets impact locations, on the washing process and the associated risk of erosion. 3D numerical simulations of the whole compressor geometry (up to the first rotor stage) are performed by using Ansys Fluent to account for the asymmetric distribution of the sprays around of the machine struts, IGV and rotor blades. The simulations are carried out by adopting the k-ε realizable turbulence model with standard wall functions, coupled with the discretephase model to track injected droplets motion. Droplets-wall interaction is also accounted for by adopting the Stanton-Rutland model which define a droplet impact outcome depending on the impact conditions. The induced erosion is evaluated by adopting an erosion model previously developed by some of the authors and implemented in Fluent through the use of a User Defined Function (UDF). Two sets of simulations are performed, by considering the rotor still and rotating, representative of off-line and on-line water washing conditions, respectively. In the rotating simulation, the Multiple Reference Frame Model is used. The obtained results demonstrate that the washing process differs substantially between the fixed and the rotating case. Moreover, to quantify the water washing effectiveness and the erosion risk, new indices were introduced and computed for the main components of the machine. These indices can be considered as useful prescriptions in the optimization process of water washing systems

    Evaluation of water washing efficiency and erosion risk in an axial compressor for different water injection conditions

    No full text
    Gas turbines performance losses are mainly due to the deposition of dirt on the compressor blades that needs to be periodically removed. This is the reason motivating the presence of water washing systems (WWS) in most of the compressor gas turbines. Water washing is generally achieved by installing a number of nozzles on the compressor casing and spraying water that clean the dirty surfaces of the compressor. The side effect of such a technique is the rising risk of erosion due to the impact of water droplets on the compressor blades which is even more pronounced when dealing with online water washing systems that is done while the unit is at normal load. The design of these systems must balance benefits and disadvantages associated to the process itself. The benefits can be measured in terms of water washing efficiency that is a quantity not uniquely defined. In previous works, the authors introduced some indices useful to evaluate the spatial cleaning coverage (the wet to the total surface) and the quantity of water mass actually impacting the dirty surfaces (the impacted to injected mass). On the other hand, water washing erosion is a complex phenomenon depending on several parameters, such as the mechanical properties of the blade material, the impact velocity and angle and the droplet diameter. For this reason, the WWS are strongly influenced by the adopted nozzles and by the injection conditions. The present paper aims at assessing water washing for six different injection conditions in the first stage of a real axial compressor. Two-phase CFD simulations are carried out with Ansys Fluent where a User Defined Function implemented by the authors is used to properly model water droplet erosion mechanism and to obtain all the quantities needed to evaluate the washing quality. Results confirm the strong influence of the injection conditions on the main features of the washing system. The study is part of an ongoing partnership between Baker Hughes and Sapienza University of Rome aiming at maximizing the washing of the compressor blades while maintaining the erosion under specific thresholds

    Integration of Floating Photovoltaic Panels with an Italian Hydroelectric Power Plant

    No full text
    The potential of applying a floating PV (FPV) system in an Italian context (namely, Cecita dam and Mucone hydroelectric power plants) is studied. The additional PV energy production, as well as the effect of non-evaporated water on the productivity of the hydropower plant, is analyzed by varying the basin surface coverage. The simulations highlight that the amount of additional hydroelectricity is quite small if compared to the non-FPV system, reaching about 3.56% for 25% basin surface coverage. However, the annual PV energy production is noticeable even at low coverage values. The expected gain in electricity production in the case of 25% basin surface coverage with the FPV plant rises to 391% of that of the actual hydropower plant. This gain becomes even larger if a vertical axis tracking system is installed and the increase is about 436%. The economic analysis confirms that the production costs (USD/kWh) of FPV systems are comparable to those of land-based PV (LBPV) plants, becoming smaller in the case that a tracking system is installed. In particular, the best solution is the one with 15% coverage of the lake. In this case, the levelized cost of electricity for the LBPVs is 0.030 USD/kWh and for the FVPs, with and without tracking, it is equal to 0.032 and 0.029 USD/kWh, respectively

    Numerical study of erosion due to online water washing in axial flow compressors

    No full text
    Recent year witnessed an increasing interest in online water washing technique since it allows to minimize compressor performance losses in the time interval between two off line washing. However, the washing capability and the related erosion risk depend on several parameters such as the injection duration , the d roplet size , the s pray angle , the water mass flow rate and the i nje ctor position s The influence of such parameters on the washing capability and erosion rate is analysed . Results are discussed with reference to number of impacts, wetted surface, capture efficiency, accumulated energy and erosion. The numerical simulation is performed with ANSYS Fluent in which a new water droplet erosion model , introduced in previous paper s, is here included as a User Defined Function . T he discussion provides useful information for prescribing the injector characteristics and the water washing procedure with the aim of minimizing the erosion risk
    corecore