4 research outputs found

    The Association between Fat Taste Sensitivity, Eating Habits, and Metabolic Health in Menopausal Women

    No full text
    The aim of our study was to evaluate the associations between sensitivity to fat taste, eating habits and BMI value in a sample of menopausal Polish women. In a population of 95 women, fat taste thresholds with oleic acid were determined, allowing us to classify each woman as a hypersensitive or hyposensitive taster. Eating habits were assessed using a validated KomPAN questionnaire for food frequency. Dietary intake was evaluated based on a food diary. Selected biochemical parameters were measured using a Konelab20i biochemical analyzer. Anthropometric parameters and blood pressure were also measured. Twenty-two menopausal women were classified as hyposensitive to fat taste and 73 as hypersensitive. The hyposensitive tasters were significantly older (p = 0.006), with the majority of them (92%) being postmenopausal (p < 0.001); this group had significantly higher BMI values (p < 0.001) and other adiposity indicators compared to their hypersensitive counterparts. The hyposensitive tasters had higher blood pressure (systolic blood pressure; SBP p = 0.030; diastolic blood pressure; DBP p = 0.003), glucose (p = 0.011) and triacylglycerols levels than the hypersensitive tasters (p = 0.031). Almost half of them had diagnosed metabolic syndrome. Daily eating occasions were associated with low oral fatty acid sensitivity, irrespective of age (p = 0.041) and BMI value (p = 0.028). There were also significant associations between frequency of consumption of meats and eggs, as well as snacks and fast foods and low oral fatty acid sensitivity before adjustment for potential confounders (both associations p < 0.05), which remained after adjustment for age (both associations p < 0.05), but not after adjustment for BMI. A multivariate logistic regression analysis showed that higher BMI value (p = 0.003), along with postmenopausal status (p = 0.003), were associated with low fat taste sensitivity irrespective of age and consumed percentage energy from fat. Postmenopausal status and BMI are associated with low fat taste sensitivity. Fat hyposensitivity may also play a role in eating habits, leading to increased eating occasions and favoring certain types of food. These eating habits may determine increased body weight and the occurrence of metabolic syndrome in mid-life women, especially those who have undergone menopause and have been exposed to the physiological changes which are conducive to these relationships

    The Effect of 3-Week Betaine Supplementation on Blood Biomarkers of Cardiometabolic Health in Young Physically Active Males

    No full text
    Betaine (BET) supplementation decreases homocysteine concentration in plasma, but it may also have an adverse effect on health by increasing blood lipid concentrations, at least in overweight and obese individuals. The aim of this study was to evaluate the effect of BET supplementation on the lipid profile and concentrations of homocysteine, inflammatory cytokines, and liver enzymes in physically active, healthy males. This was a randomized, placebo (PL)-controlled, double-blinded, crossover trial. BET (2.5 or 5.0 g/d) was administered for 21 days. Before and after supplementation with BET or PL, anthropometric measurements and blood were collected in a fasted state. Our results show that BET supplementation significantly decreased homocysteine concentration (from 17.1 ± 4.0 μmol/L before BET to 15.6 ± 3.5 μmol/L after BET, p = 0.009, η2 = 0.164). However, the intervention had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triacylglycerol, interleukins 1β and 6, and tumour necrosis factor α concentrations, or alanine and aspartate activities. In addition, there were no interactions between the MTHFR genotype and BET dose. In conclusion, BET supplementation may be beneficial for homocysteine concentration in healthy, physically active males, with no detrimental effect on lipid profile

    Inflammatory Potential of Diet Is Associated with Biomarkers Levels of Inflammation and Cognitive Function among Postmenopausal Women

    No full text
    In postmenopausal women (PW), estrogen depletion may predispose to cognitive decline through an increased risk of chronic inflammation. Unhealthy diets also appear to have an impact on the cognitive health of these women. The aim of this study was to investigate the association between inflammatory potential of the diet, levels of inflammatory biomarkers, and cognitive function in PW. In a population of 222 PW, energy intake-adjusted Dietary Inflammatory Index (E-DII) was used to assess the dietary inflammatory potential. Cognitive function was estimated using the Polish version of Mini-Mental State Examination (MMSE), corrected by age and educational level. Selected biochemical inflammatory markers (C-reactive protein, CRP; interleukin-6, IL-6; and tumor necrosis factor alpha, TNF-α) were measured by ELISA tests. PW with an anti-inflammatory diet (first tercile) had significantly higher MMSE, while BMI, percentage fat mass and TNFα concentration were significantly lower compared to those with the most proinflammatory diets (third tercile). Women with cognitive impairment had significantly higher IL-6 concentrations (4.1 (0.8) pg/mL vs. 2.5 (0.2) pg/mL, p = 0.004), and were less educated (12.7 (0.7) years vs. 14.1 (0.2) years, p = 0.03) and less physically active compared to cognitively normal women. PW with the most proinflammatory diets had increased odds of cognitive impairment compared to those with the most anti-inflammatory diets, even after adjustment (OR = 11.10, 95% confidence level; 95%CI: 2.22; 55.56; p = 0.002). Each one-point increase in E-DII (as a continuous value) was also associated with 1.55-times greater odds of cognitive impairment (95%Cl: 1.19; 2.02 p = 0.003) in this population. Dietary inflammation may increase the risk of cognitive impairment in PW, but future studies should include a more sensitive battery of tests to assess cognitive function in this population. Implementation of an anti-inflammatory dietary pattern in PW may help prevent cognitive decline

    Effect of the Addition of Buckwheat Sprouts Modified with the Addition of Saccharomyces cerevisiae var. boulardii to an Atherogenic Diet on the Metabolism of Sterols, Stanols and Fatty Acids in Rats

    No full text
    The aim of the study was to evaluate the effect of the addition of Fagopyrum esculentum Moench buckwheat sprouts modified with the addition of Saccharomyces cerevisiae var. boulardii to an atherogenic diet on the metabolism of sterols and fatty acids in rats. It was noticed in the study that the group fed with modified sprouts (HFDPRS) had a greater amount of sterols by 75.2%, compared to the group fed on an atherogenic diet (HFD). The content of cholesterol in the liver and feces was lower in the HFDPRS group than the HFD group. In the serum of the HFDPRS group, a more significant amount of the following acids was observed: C18:2 (increase by 13.5%), C20:4 (increase by 15.1%), and C22:6 (increase by 13.1%), compared to the HFDCS group. Regarding the biochemical parameters, it was noted that the group fed the diet with the addition of probiotic-rich sprouts diet had lower non-HDL, LDL-C and CRP ratios compared to the group fed the high-fat diet. The obtained results indicate that adding modified buckwheat sprouts to the diet by adding the probiotic strain of the yeast may have a significant impact on the metabolism of the indicated components in the organism
    corecore