8 research outputs found

    NMR-Studies of Octahedral Dicyano-(2,2' Bipyridine) and Tetracyano-(2,2'-Bipyridine) Iron(ii) Complexes

    No full text
    Coordination compounds of the polypyridines, 2,2 ' -bipyridine (bipy) and 1,10-penanthroline (phen) have offered renewed interest on account of their manifold applications and from the point of view of understanding their structure-reactivity relationships.1 Iron(II) reacts with them to form tris-complexes possessing spin-paired ground states. Cyanide ion greatly enhances the rate of displacement of bipy or phen to form the Schilt class of compounds. Fe(bipy)2(CN)2 and Fe(phen)2(CN)2. They display varying colours in solution depending upon the nature of the solvent and react reversibly with acids to form diprotonated species.2 Magnetic circular dichroism studies have been reported to describe their lowest electronic excitation

    Synthetic and physicochemical studies of uranium complexes with semicarbazone and hydrazone

    No full text
    Uranyl complexes of two Schiff bases, semicarbazone and hydrazone containing OON donor atoms have been synthesized and characterized on the basis of NMR, IR and electronic spectral studies, conductance, magnetic susceptibility and thermogravimetric data. The 1H NMR spectrum of the semicarbazone complex shows low field signals due to OH, NH and ---CH=N groups at 10.23, 9.31 and 8.17 ppm, respectively. The aromatic protons appear in the range 7.74–7.40 ppm. On complexation with U(VI) the signals due to OH and NH disappear evidently due to their participation in coordination. The coordination number of the o-vanillin semicarbazone (oVSC) complex is 6 whereas, that of the o-vanillin isonicotinic acid hydrazone (oVINAH) complex is 8, in addition to the two oxygen atoms already bonded to U(VI) in each species. The thermograms show the presence of 3 and 2 water molecules in these complexes, respectively and the IR spectral data also support the above conclusion. Suitable structures have been assigned

    The Exchange Processes in Zinc-Complexes of o-Vanillin Salicyloylhydrazone as studied by 2-Dimensional NMR

    No full text
    Zinc forms two types of complexes with o-vanillin salicyloylhydrazone. The H-1 and C-13 nmr studies suggest that it coordinates with azomethine nitrogen, the carbonyl oxygen and with one or both of the phenolic oxygens. The H-1-H-1 and H-1 decoupled C-13-C-13 two-dimensional nuclear Overhauser and exchange spectra show that there is an exchange between the two types of complexes

    The exchange processes in o-vanillin salicyloylhydrazone as studied by two-dimensional NMR

    No full text
    Multidimensional NMR studies of o-vanillin salicyloylhydrazone at various temperatures have been undertaken in deuterated dimethyl sulfoxide and its cryoprotective mixture in H2O and D2O, acetone and acetonitrile. The molecule is found to exist in two conformers in dimethyl sulfoxide and the cryoprotective mixture. The exchange between the two conformers has been detected from the two-dimensional experiments - information which is not easily obtainable from the normal one-dimensional spectra. Results in the different solvents are interpreted in terms of solvent-solute interactions

    Physicochemical studies of (o-vanillin thiosemicarbazonato)-nickel(Ii) chelate

    No full text
    Five- and six-membered rings result from the chelation of nickel(II) by the dibasic tridentate Schiff base ligand, o-vanillin thiosemicarbazone(o-VTSC), a new chelate prepared and characterized. The structural results are discussed in the light of spectroscopic and other data
    corecore