2 research outputs found
Generalizing Galileons
The Galileons are a set of terms within four-dimensional effective field
theories, obeying symmetries that can be derived from the dynamics of a
3+1-dimensional flat brane embedded in a 5-dimensional Minkowski Bulk. These
theories have some intriguing properties, including freedom from ghosts and a
non-renormalization theorem that hints at possible applications in both
particle physics and cosmology. In this brief review article, we will summarize
our attempts over the last year to extend the Galileon idea in two important
ways. We will discuss the effective field theory construction arising from
co-dimension greater than one flat branes embedded in a flat background - the
multiGalileons - and we will then describe symmetric covariant versions of the
Galileons, more suitable for general cosmological applications. While all these
Galileons can be thought of as interesting four-dimensional field theories in
their own rights, the work described here may also make it easier to embed them
into string theory, with its multiple extra dimensions and more general
gravitational backgrounds.Comment: 16 pages; invited brief review article for a special issue of
Classical and Quantum Gravity. Submitted to CQ
The Adiabatic Instability on Cosmology's Dark Side
We consider theories with a nontrivial coupling between the matter and dark
energy sectors. We describe a small scale instability that can occur in such
models when the coupling is strong compared to gravity, generalizing and
correcting earlier treatments. The instability is characterized by a negative
sound speed squared of an effective coupled dark matter/dark energy fluid. Our
results are general, and applicable to a wide class of coupled models and
provide a powerful, redshift-dependent tool, complementary to other
constraints, with which to rule many of them out. A detailed analysis and
applications to a range of models are presented in a longer companion paper.Comment: 4 pages, 1 figur