93 research outputs found
A Low Complexity Algorithm and Architecture for Systematic Encoding of Hermitian Codes
We present an algorithm for systematic encoding of Hermitian codes. For a
Hermitian code defined over GF(q^2), the proposed algorithm achieves a run time
complexity of O(q^2) and is suitable for VLSI implementation. The encoder
architecture uses as main blocks q varying-rate Reed-Solomon encoders and
achieves a space complexity of O(q^2) in terms of finite field multipliers and
memory elements.Comment: 5 Pages, Accepted in IEEE International Symposium on Information
Theory ISIT 200
A study of existing Ontologies in the IoT-domain
Several domains have adopted the increasing use of IoT-based devices to
collect sensor data for generating abstractions and perceptions of the real
world. This sensor data is multi-modal and heterogeneous in nature. This
heterogeneity induces interoperability issues while developing cross-domain
applications, thereby restricting the possibility of reusing sensor data to
develop new applications. As a solution to this, semantic approaches have been
proposed in the literature to tackle problems related to interoperability of
sensor data. Several ontologies have been proposed to handle different aspects
of IoT-based sensor data collection, ranging from discovering the IoT sensors
for data collection to applying reasoning on the collected sensor data for
drawing inferences. In this paper, we survey these existing semantic ontologies
to provide an overview of the recent developments in this field. We highlight
the fundamental ontological concepts (e.g., sensor-capabilities and
context-awareness) required for an IoT-based application, and survey the
existing ontologies which include these concepts. Based on our study, we also
identify the shortcomings of currently available ontologies, which serves as a
stepping stone to state the need for a common unified ontology for the IoT
domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of
Thing
Self-organization of Nodes using Bio-Inspired Techniques for Achieving Small World Properties
In an autonomous wireless sensor network, self-organization of the nodes is
essential to achieve network wide characteristics. We believe that connectivity
in wireless autonomous networks can be increased and overall average path
length can be reduced by using beamforming and bio-inspired algorithms. Recent
works on the use of beamforming in wireless networks mostly assume the
knowledge of the network in aggregation to either heterogeneous or hybrid
deployment. We propose that without the global knowledge or the introduction of
any special feature, the average path length can be reduced with the help of
inspirations from the nature and simple interactions between neighboring nodes.
Our algorithm also reduces the number of disconnected components within the
network. Our results show that reduction in the average path length and the
number of disconnected components can be achieved using very simple local rules
and without the full network knowledge.Comment: Accepted to Joint workshop on complex networks and pervasive group
communication (CCNet/PerGroup), in conjunction with IEEE Globecom 201
A Self-Organization Framework for Wireless Ad Hoc Networks as Small Worlds
Motivated by the benefits of small world networks, we propose a
self-organization framework for wireless ad hoc networks. We investigate the
use of directional beamforming for creating long-range short cuts between
nodes. Using simulation results for randomized beamforming as a guideline, we
identify crucial design issues for algorithm design. Our results show that,
while significant path length reduction is achievable, this is accompanied by
the problem of asymmetric paths between nodes. Subsequently, we propose a
distributed algorithm for small world creation that achieves path length
reduction while maintaining connectivity. We define a new centrality measure
that estimates the structural importance of nodes based on traffic flow in the
network, which is used to identify the optimum nodes for beamforming. We show,
using simulations, that this leads to significant reduction in path length
while maintaining connectivity.Comment: Submitted to IEEE Transactions on Vehicular Technolog
- âŠ