9 research outputs found
Stringent Constraint on Galactic Positron Production
The intense 0.511 MeV gamma-ray line emission from the Galactic Center
observed by INTEGRAL requires a large annihilation rate of nonrelativistic
positrons. If these positrons are injected at even mildly relativistic
energies, higher-energy gamma rays will also be produced. We calculate the
gamma-ray spectrum due to inflight annihilation and compare to the observed
diffuse Galactic gamma-ray data. Even in a simplified but conservative
treatment, we find that the positron injection energies must be
MeV, which strongly constrains models for Galactic positron production.Comment: 4 pages, 2 figures; minor revisions, accepted for publication in PR
Non-thermal Processes in Black-Hole-Jet Magnetospheres
The environs of supermassive black holes are among the universe's most
extreme phenomena. Understanding the physical processes occurring in the
vicinity of black holes may provide the key to answer a number of fundamental
astrophysical questions including the detectability of strong gravity effects,
the formation and propagation of relativistic jets, the origin of the highest
energy gamma-rays and cosmic-rays, and the nature and evolution of the central
engine in Active Galactic Nuclei (AGN). As a step towards this direction, this
paper reviews some of the progress achieved in the field based on observations
in the very high energy domain. It particularly focuses on non-thermal particle
acceleration and emission processes that may occur in the rotating
magnetospheres originating from accreting, supermassive black hole systems.
Topics covered include direct electric field acceleration in the black hole's
magnetosphere, ultra-high energy cosmic ray production, Blandford-Znajek
mechanism, centrifugal acceleration and magnetic reconnection, along with the
relevant efficiency constraints imposed by interactions with matter, radiation
and fields. By way of application, a detailed discussion of well-known sources
(Sgr A*; Cen A; M87; NGC1399) is presented.Comment: invited review for International Journal of Modern Physics D, 49
pages, 15 figures; minor typos corrected to match published versio
Structural basis of mitochondrial transcription.
The mitochondrial genome is transcribed by a single-subunit DNA-dependent RNA polymerase (mtRNAP) and its auxiliary factors. Structural studies have elucidated how mtRNAP cooperates with its dedicated transcription factors to direct RNA synthesis: initiation factors TFAM and TFB2M assist in promoter-DNA binding and opening by mtRNAP while the elongation factor TEFM increases polymerase processivity to the levels required for synthesis of long polycistronic mtRNA transcripts. Here, we review the emerging body of structural and functional studies of human mitochondrial transcription, provide a molecular movie that can be used for teaching purposes and discuss the open questions to guide future directions of investigation