13 research outputs found

    Spontaneous radiation calculations for the European XFEL

    No full text
    Calculating spontaneous radiation emission from longundulator sections such as those present in the EuropeanXFEL is important for several diagnostics and sciencecases. For realistic setups, and including effects of electronbeam focusing, emittance and energy spread in the electronbeam, these calculations should be performed numerically.We present these calculations for several electron beam andundulator parameters performed by various codes

    Uncleaved NS2-3 Is Required for Production of Infectious Bovine Viral Diarrhea Virus

    No full text
    Despite increasing characterization of pestivirus-encoded proteins, functions for nonstructural (NS) proteins NS2, NS2-3, NS4B, and NS5A have not yet been reported. Here we investigated the function of bovine viral diarrhea virus (BVDV) uncleaved NS2-3. To test whether NS2-3 has a discrete function, the uncleaved protein was specifically abolished in two ways: first by inserting a ubiquitin monomer between NS2 and NS3, and second by placing an internal ribosome entry site between the two proteins (a bicistronic genome). In both cases, complete processing of NS2-3 prevented infectious virion formation without affecting RNA replication. We tested the hypothesis that uncleaved NS2-3 was involved in morphogenesis by creating a bicistronic genome in which NS2-3 was restored in the second cistron. With this genome, both uncleaved NS2-3 expression and particle production returned. We then investigated the minimal regions of the polyprotein that could rescue an NS2-3 defect by developing a trans-complementation assay. We determined that the expression of NS4A in cis with NS2-3 markedly increased its activity, while p7 could be supplied in trans. Based on these data, we propose a model for NS2-3 action in virion morphogenesis

    Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider

    No full text
    The realization of the International Linear Collider (ILC) will require the ability to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittancies are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 35nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists

    ATF2 Proposal: v.1

    No full text
    Since the ICFA decision on the choice of technology, a world-wide collaboration on the design of the ILC has rapidly progressed. The formation of the GDE will accelerate the work towards a final design. An important technical challenge is obviously the high gradient acceleration but what is similarly challenging is the collision of extremely small beams of a few nanometer size. The latter challenge has three distinct issues: creating small emittance beams, preserving the emittance during acceleration and transport, and focusing the beams to nanometers. Most studies have been done using computer simulations but many issues still remain that require experimental verification. KEK-ATF was built to create small emittance beams, and succeeded in obtaining an emittance that almost satisfies the ILC requirements. In this proposal we present a project, ATF2, which addresses the third issue, namely the focusing of the beam into nanometer spot.ybr> In the longer term, the ATF2 project would also provide invaluable input for the CLIC design of a future multi-TeV collider. The ATF2 project will extend the extraction beamline of the ATF with an ILC-type final focus system to create a tightly focused, stable beam by making use of the small emittance of the ATF.<br

    Contributory presentations/posters

    No full text

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization
    corecore