22 research outputs found
A distal effect of microsomal triglyceride transfer protein deficiency on the lysosomal recycling of CD1d
Microsomal triglyceride transfer protein (MTP) is an endoplasmic reticulum (ER)âresident lipid transfer protein involved in the biosynthesis and lipid loading of apolipoprotein B. MTP was recently suggested to directly regulate the biosynthesis of the MHC Iâlike, lipid antigen presenting molecule CD1d, based on coprecipitation experiments and lipid loading assays. However, we found that the major impact of MTP deficiency occurred distal to the ER and Golgi compartments. Thus, although the rates of CD1d biosynthesis, glycosylation maturation, and internalization from the cell surface were preserved, the late but essential stage of recycling from lysosome to plasma membrane was profoundly impaired. Likewise, functional experiments indicated defects of CD1d-mediated lipid presentation in the lysosome but not in the secretory pathway. These intriguing findings suggest a novel, unexpected role of MTP at a late stage of CD1d trafficking in the lysosomal compartment
Toxicity Testing in the 21st Century: Defining New Risk Assessment Approaches Based on Perturbation of Intracellular Toxicity Pathways
The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC) report Toxicity Testing in the 21st Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a) âtoxicity pathwaysâ (the innate cellular pathways that may be perturbed by chemicals) and (b) the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU). EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair
Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells
textabstractSomatic ribosomal protein mutations have recently been described in cancer, yet their impact on cellular transcription and translation remains poorly understood. Here, we integrate mRNA sequencing, ribosome footprinting, polysomal RNA sequencing and mass spectrometry datasets from a mouse lymphoid cell model to characterize the T-cell acute lymphoblastic leukemia (T-ALL) associated ribosomal RPL10 R98S mutation. Surprisingly, RPL10 R98S induces changes in protein levels primarily through transcriptional rather than translation efficiency changes. Phosphoserine phosphatase (PSPH), encoding a key serine biosynthesis enzyme, was the only gene with elevated transcription and translation leading to protein overexpression. PSPH upregulation is a general phenomenon in T-ALL patient samples, associated with elevated serine and glycine levels in xenograft mice. Reduction of PSPH expression suppresses proliferation of T-ALL cell lines and their capacity to expand in mice. We identify ribosomal mutation driven induction of serine biosynthesis and provide evidence supporting dependence of T-ALL cells on PSPH
STAT1 regulates p73-mediated Bax gene expression
Although signal transducer and activator of transcription 1 (STAT1) mediated regulation of p53 transcription and apoptosis has been previously reported, modulation of other members of the p53 family of transcription factors remains poorly understood. In this study, we found that STAT1 and TA-p73 can interact directly and that p73-mediated Bax promoter activity was observed to be reduced by STAT1 expression in a p53-independent manner for which STAT1 Tyrosine-701 and Serine-727 are key residues. This study presents the first report physically linking STAT1 and TA-p73 signalling and highlights the modulation of the Bax promoter in the context of IFN-gamma stimulation