130 research outputs found
Motion and Interaction of Magnetic Dislocations in Alternating Magnetic Field
Abstract The behavior of magnetic dislocations (MDs) in an alternating harmonic magnetic field in iron garnets has been experimentally investigated. The results are presented for single-crystal plates in which the drift of domain walls is observed in fields of sound frequencies. It is found that MDs in a stripe domain structure are able to move not only along but also across domain walls. A pairwise interaction between magnetic dislocations when they approach each other to distances on the order of the sizes of the cores of MDs is revealed. The processes of the annihilation, mutual passing of magnetic dislocations through each other and overtaking are found. The features of the dynamic behavior of MDs are explained using a mechanism based on the presence of vertical Bloch lines in a structure of domain walls. MDs are formed at nucleation centers, and their nucleation field is lower than the drift-starting field, which corresponds to previously proposed dislocational mechanism of the drift. The dependencies of quantitative parameters of the drift and MDs on amplitude and frequency of the pumping field are determined. The behavior of MDs should be considered when analyzing the mechanisms for magnetization and temperature-dependent phase transitions in magnetic layers
Grassmannians Gr(N-1,N+1), closed differential N-1 forms and N-dimensional integrable systems
Integrable flows on the Grassmannians Gr(N-1,N+1) are defined by the
requirement of closedness of the differential N-1 forms of rank
N-1 naturally associated with Gr(N-1,N+1). Gauge-invariant parts of these
flows, given by the systems of the N-1 quasi-linear differential equations,
describe coisotropic deformations of (N-1)-dimensional linear subspaces. For
the class of solutions which are Laurent polynomials in one variable these
systems coincide with N-dimensional integrable systems such as Liouville
equation (N=2), dispersionless Kadomtsev-Petviashvili equation (N=3),
dispersionless Toda equation (N=3), Plebanski second heavenly equation (N=4)
and others. Gauge invariant part of the forms provides us with
the compact form of the corresponding hierarchies. Dual quasi-linear systems
associated with the projectively dual Grassmannians Gr(2,N+1) are defined via
the requirement of the closedness of the dual forms . It
is shown that at N=3 the self-dual quasi-linear system, which is associated
with the harmonic (closed and co-closed) form , coincides with the
Maxwell equations for orthogonal electric and magnetic fields.Comment: 26 pages, references adde
Unidirectional motion of magnetic domain walls: The experiment and numerical simulation
The results of study of unidirectional motion of topologically different domain structures under the influence of periodic bipolar and unipolar magnetic field pulses applied perpendicular to the sample plane of (111) iron garnet single crystal plate are presented. The response of the domain structure to the field pulses was studied by direct observations utilizing the stroboscopic technique. Experimentally obtained dependences of the speed of unidirectional motion of stripe domains on the parameters of external bipolar pulsed magnetic field are compared with the results of numerical simulations. © Published under licence by IOP Publishing Ltd.Ministry of Science and Higher Education of the Russian Federation: 3.6121.2017The work was performed within the framework of the basic part of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project 3.6121.2017)
New Superhard Phases for 3D C60-based Fullerites
We have explored new possible phases of 3D C60-based fullerites using
semiempirical potentials and ab-initio density functional methods. We have
found three closely related structures - two body centered orthorhombic and one
body centered cubic - having 52, 56 and 60 tetracoordinated atoms per molecule.
These 3D polymers result in semiconductors with bulk moduli near 300 GPa, and
shear moduli around 240 GPa, which make them good candidates for new low
density superhard materials.Comment: To be published in Physical Review Letter
Algebraic varieties in Birkhoff strata of the Grassmannian Gr: Harrison cohomology and integrable systems
Local properties of families of algebraic subsets in Birkhoff strata
of Gr containing hyperelliptic curves of genus are
studied. It is shown that the tangent spaces for are isomorphic to
linear spaces of 2-coboundaries. Particular subsets in are described by
the intergrable dispersionless coupled KdV systems of hydrodynamical type
defining a special class of 2-cocycles and 2-coboundaries in . It is
demonstrated that the blows-ups of such 2-cocycles and 2-coboundaries and
gradient catastrophes for associated integrable systems are interrelated.Comment: 28 pages, no figures. Generally improved version, in particular the
Discussion section. Added references. Corrected typo
Far-infrared vibrational properties of linear C60 polymers: A comparison between neutral and charged materials
We report the far-infrared transmittance spectrum of a pure phase of the orthorhombic high-temperature and high-pressure C-60 polymer and compare the results with a previously published spectrum of the charged RbC60 orthorhombic polymer. Assignments for both spectra are made with the aid of first-principles quantum molecular dynamics simulations of the two materials. We find that the striking spectral differences between the neutral and charged linear fullerene polymers can be fully accounted for by charge effects on the C-60 ball
Atomic-Level Characterization of the Activation Mechanism of SERCA by Calcium
We have performed molecular dynamics (MD) simulations to elucidate, in atomic detail, the mechanism by which the sarcoplasmic reticulum Ca2+-ATPase (SERCA) is activated by Ca2+. Crystal structures suggest that activation of SERCA occurs when the cytoplasmic head-piece, in an open (E1) conformation stabilized by Ca2+, undergoes a large-scale open-to-closed (E1 to E2) transition that is induced by ATP binding. However, spectroscopic measurements in solution suggest that these structural states (E1 and E2) are not tightly coupled to biochemical states (defined by bound ligands); the closed E2 state predominates even in the absence of ATP, in both the presence and absence of Ca2+. How is this loose coupling consistent with the high efficiency of energy transduction in the Ca2+-ATPase? To provide insight into this question, we performed long (500 ns) all-atom MD simulations starting from the open crystal structure, including a lipid bilayer and water. In both the presence and absence of Ca2+, we observed a large-scale open-to-closed conformational transition within 400 ns, supporting the weak coupling between structural and biochemical states. However, upon closer inspection, it is clear that Ca2+ is necessary and sufficient for SERCA to reach the precise geometrical arrangement necessary for activation of ATP hydrolysis. Contrary to suggestions from crystal structures, but in agreement with solution spectroscopy, the presence of ATP is not required for this activating transition. Principal component analysis showed that Ca2+ reshapes the free energy landscape of SERCA to create a path between the open conformation and the activated closed conformation. Thus the malleability of the free energy landscape is essential for SERCA efficiency, ensuring that ATP hydrolysis is tightly coupled to Ca2+ transport. These results demonstrate the importance of real-time dynamics in the formation of catalytically competent conformations of SERCA, with broad implications for understanding enzymatic catalysis in atomic detail
Quantitative Proteome Profiling of C. burnetii under Tetracycline Stress Conditions
The recommended antibiotic regimen against Coxiella burnetii, the etiological agent of Q fever, is based on a semi-synthetic, second-generation tetracycline, doxycycline. Here, we report on the comparison of the proteomes of a C. burnetii reference strain either cultured under control conditions or under tetracycline stress conditions. Using the MS-driven combined fractional diagonal chromatography proteomics technique, out of the 531 proteins identified, 5 and 19 proteins were found significantly up- and down-regulated respectively, under tetracycline stress. Although the predicted cellular functions of these regulated proteins did not point to known tetracycline resistance mechanisms, our data clearly reveal the plasticity of the proteome of C. burnetii to battle tetracycline stress. Finally, we raise several plausible hypotheses that could further lead to more focused experiments on studying tetracycline resistance in C. burnetii and thus reduced treatment failures of Q fever
- …