7 research outputs found

    Downregulation of Caspase 8 in a group of Iranian breast cancer patients – A pilot study

    Get PDF
    Acknowledgments Author contributions: MA performed related laboratory work, helped with sample collection, analysed the data and drafted the manuscript. ND and FAJ helped with sample collection and laboratory work. ASF and MG confirmed the diagnosis and provided the appropriate specimens. AP conceived and designed the study, supervised the project and edited the manuscript. The authors would like to thank the research council of Mashhad University of Medical Sciences, Mashhad, Iran for the financial support (Grant Number: 940936).Peer reviewedPublisher PD

    Evaluation of leishmanicidal effect of Euphorbia petiolata extract by in vivo anti-leishmanial assay using promastigotes of Leishmania major

    Get PDF
    Objective: The extract of different species of Euphorbia has been successfully used as a remedy for treatment of cutaneous leishmaniasis. The aim of this study was to assess the in vitro leishmanicidal effect of Euphorbia petiolata (E. petiolata) extract. Materials and Methods: Ethanolic percolated and methanolic Soxhlet extract of E. petiolata on promastigotes of L. major at different concentrations of extracts, one positive control group and one negative control group as well as 1 solvent control were prepared and placed in 24-well plates that contained 40,000 parasites/well. Afterwards, plates were incubated at 25 ˚C for six days and number of parasites in each well were determined on days 2, 4 and 6 of the experiment. Results: Both percolated and Soxhlet extracts in methanol and DMSO solvents had significant effects (equal to that of amphotericin B) on promastigote form of parasite at the concentration of 1 mg/ml. At lower concentrations, the extracts of E. petiolata had favorable leishmanicidal activity and killed L. major promastigotes dose-dependently. Conclusion: Our results support the possibility of E. petiolata extracts application as an anti-leishmanial agent with similar effects to amphotericin B

    The effects of fasting on physiological status and gene expression; an overview

    No full text
    Calorie restriction through ingesting no or minimal amounts of food and caloric beverages for periods of time is called fasting. Fasting can affect body through changing in physical and metabolic adaptations, as well as mineral and hormonal status. However, psychological effects and sometimes medical complications are likely in case of inappropriate fasting. Fasting is associated with changes in expression of different genes and signaling pathways. In this brief review, physiological effects of fasting, affected pathways during fasting and potential applications of fasting are discussed

    TOX3 Gene polymorphisms and breast cancer; effects and implications of the variations: review article

    No full text
    Breast carcinoma is the most common cause of cancer mortality among women globally. Primary and secondary prevention through avoiding known risk factors, screening for early detection of tumors with different methods as well as timely treatment, can be effective in reduction of the burden of this devastating disease. This can in turn prevent death and also increase survival in patients with breast cancer. Both environmental and genetic factors are involved in the pathogenesis of breast cancer. Multiple genetic factors can influence the risk and development of breast cancer. Identification of genetic variants including single nucleotide polymorphisms (SNPs), which are associated with the risk of breast cancer development, are mostly done through genetic association studies. It is demonstrated that SNP allele frequencies vary amongst different populations. It has been shown that genetic risk factors like variations in TOX high mobility group box family member 3 (TOX3), which affect the liability for neoplasm, play an important role in the development of breast cancer. Although TOX3 is expressed mainly in the brain, its expression in other tissues especially breast has also been reported. TOX3 maps to chromosome 16q12 and encodes the nuclear high-mobility group (HMG)-box. It has calcium (Ca2+)-dependent transcriptional activities and is a co-factor of cAMP response element (CRE)-binding protein (CREB) and CREB-binding protein (CBP). TOX3, activated with Ca2+, is related with activation of the promoter of some other genes including BCL2 and C3 complement and also CITED1 gene expression. It also induces activation of the c-fos promoter and therefore its expression. Genome-wide association studies (GWAS) in different populations including European, Asian and African-American have demonstrated that a SNP near its 5ʹ end and the promoter of TOX3 gene appears to be significantly associated with breast cancer susceptibility. Furthermore, breast cancer–associated SNPs lead to enhanced FOXA1 bindings and in turn, a reduction in TOX3 gene expression. This review has highlighted the importance of TOX3 function, SNPs and its association with breast cancer risk and also its potential effects on breast cancer treatment; TOX3 plays dual and somehow conflicting roles in cancer initiation and progression which remains to be further investigated
    corecore