93 research outputs found

    Protection of bone in premenopausal women with breast cancer: focus on zoledronic acid

    Get PDF
    Rebecca AftDepartment of Surgery, Washington University School of Medicine, St Louis, MO, USAAbstract: Maintaining bone health is important for patients with breast cancer (BC), the most commonly diagnosed cancer in American women. Indeed, bone loss is common throughout the BC disease continuum. In the metastatic BC setting, patients are likely to develop bone metastases, a painful complication that can lead to potentially debilitating skeletal-related events. Bone health is equally important for patients with early BC. During adjuvant therapy for early BC, the largest challenge to bone health is from accelerated bone mineral density (BMD) loss. Although decreased BMD is well recognized in older, postmenopausal women, it may be underestimated in younger, premenopausal women undergoing endocrine therapy for BC. The rate and extent of cancer therapy-induced bone loss (from chemotherapy or endocrine therapy) are substantially greater than normal decreases in BMD during menopause. Bisphosphonates such as zoledronic acid (ZOL) are antiresorptive agents indicated for the treatment of bone metastases from BC. Clinical trials over the past few years suggest that, although not yet approved for this indication, ZOL can prevent cancer therapy-induced bone loss and improve BMD in premenopausal women receiving adjuvant (endocrine or chemo-) therapy for BC. Furthermore, the benefits of ZOL therapy may go beyond maintaining bone health and include potential anticancer benefits together with favorable tolerability and cost/benefit profiles. This review will focus specifically on the role of ZOL in preserving the bone health of premenopausal women with BC.Keywords: breast cancer, premenopausal, zoledronic aci

    Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy

    Get PDF
    The goal of breast-conserving surgery is to completely remove all of the cancer. Currently, no intraoperative tools can microscopically analyze the entire lumpectomy specimen, which results in 20 to 60% of patients undergoing second surgeries to achieve clear margins. To address this critical need, we have laid the foundation for the development of a device that could allow accurate intraoperative margin assessment. We demonstrate that by taking advantage of the intrinsic optical contrast of breast tissue, photoacoustic microscopy (PAM) can achieve multilayered histology-like imaging of the tissue surface. The high correlation of the PAM images to the conventional histologic images allows rapid computations of diagnostic features such as nuclear size and packing density, potentially identifying small clusters of cancer cells. Because PAM does not require tissue processing or staining, it can be performed promptly and intraoperatively, enabling immediate directed re-excision and reducing the number of second surgeries

    The Liquid Biopsy Consortium: Challenges and opportunities for early cancer detection and monitoring

    Get PDF
    The emerging field of liquid biopsy stands at the forefront of novel diagnostic strategies for cancer and other diseases. Liquid biopsy allows minimally invasive molecular characterization of cancers for diagnosis, patient stratification to therapy, and longitudinal monitoring. Liquid biopsy strategies include detection and monitoring of circulating tumor cells, cell-free DNA, and extracellular vesicles. In this review, we address the current understanding and the role of existing liquid-biopsy-based modalities in cancer diagnostics and monitoring. We specifically focus on the technical and clinical challenges associated with liquid biopsy and biomarker development being addressed by the Liquid Biopsy Consortium, established through the National Cancer Institute. The Liquid Biopsy Consortium has developed new methods/assays and validated existing methods/technologies to capture and characterize tumor-derived circulating cargo, as well as addressed existing challenges and provided recommendations for advancing biomarker assays

    High-throughput, label-free, single-cell photoacoustic microscopy of intratumoral metabolic heterogeneity

    Get PDF
    Intratumoral heterogeneity, which is manifested in almost all of the hallmarks of cancer, including the significantly altered metabolic profiles of cancer cells, represents a challenge to effective cancer therapy. High-throughput measurements of the metabolism of individual cancer cells would allow direct visualization and quantification of intratumoral metabolic heterogeneity, yet the throughputs of current measurement techniques are limited to about 120 cells per hour. Here, we show that single-cell photoacoustic microscopy can reach throughputs of approximately 12,000 cells per hour by trapping single cells with blood in an oxygen-diffusion-limited high-density microwell array and by using photoacoustic imaging to measure the haemoglobin oxygen change (that is, the oxygen consumption rate) in the microwells. We demonstrate the capability of this label-free technique by performing high-throughput single-cell oxygen-consumption-rate measurements of cultured cells and by imaging intratumoral metabolic heterogeneity in specimens from patients with breast cancer. High-throughput single-cell photoacoustic microscopy of oxygen consumption rates should enable the faster characterization of intratumoral metabolic heterogeneity

    Photoacoustic microscopy enables multilayered histological imaging of human breast cancer without staining

    Get PDF
    In 2016, an estimated ~250,000 new cases of invasive and non-invasive breast cancer were diagnosed in US women. About 60–75% of these cases were treated with breast conserving surgery (BCS) as the initial therapy. To reduce the local recurrence rate, the goal of BCS is to excise the tumor with a rim of normal surrounding tissue, so that no cancer cells remain at the cut margin, while preserving as much normal breast tissue as possible. Therefore, patients with remaining cancer cells at the cut margin commonly require a second surgical procedure to obtain clear margins. Different approaches have been used to decrease the positive margin rate to avoid re-excision. However, these techniques are variously ineffective in reducing the re-operative rate, difficult to master by surgeons, or time-consuming for large specimens. Thus, 20-60% of patients undergoing BCS still require second surgeries due to positive surgical margins. The ideal tool for margin assessment would provide the same information as histological analysis, without the need for processing specimens. To achieve this goal, we have developed and refined label-free photoacoustic microscopy (PAM) for breast specimens. Exploiting the intrinsic optical contrast of tissue, ultraviolet (UV) laser illumination can highlight cell nuclei, thus providing the same contrast as hematoxylin labeling used in conventional histology and measuring features related to the histological landscape without the need for labels. We demonstrate that our UV-PAM system can provide label-free, high-resolution, and histology-like imaging of fixed, unprocessed breast tissue

    A microfluidic-based filtration system to enrich for bone marrow disseminated tumor cells from breast cancer patients

    Get PDF
    Disseminated tumors cells (DTCs) present in the bone marrow (BM) are believed to be the progenitors of distant metastatic spread, a major cause of mortality in breast cancer patients. To better understand the behavior and therapeutic vulnerabilities of these rare cell populations, unbiased methods for selective cell enrichment are required. In this study, we have evaluated a microfluidic-based filtration system (ParsortixR, Angle PLC), previously demonstrated for use in circulating tumor cell (CTC) capture, to capture BM DTCs. Performance using BM samples was also compared directly to enrichment of CTCs in the peripheral blood (PB) from both metastatic and non-metastatic breast cancer patients. Although the non-specific capture of BM immune cells was significant, the device could routinely achieve significant cytoreduction of BM and PB WBCs and at least 1,000-fold enrichment of DTCs, based on labeled tumor cell spike-in experiments. Detection of previously characterized DTC-associated gene expression biomarkers was greatly enhanced by the enrichment method, as demonstrated by droplet digital PCR assay. Cells eluted from the device were viable and suitable for single cell RNA sequencing experiments. DTCs in enriched BM samples comprised up to 5% of the total cell population, allowing for effective single cell and population-based transcriptional profiling of these rare cells. Use of the Parsortix instrument will be an effective approach to enrich for rare BM DTCs in order to better understand their diverse molecular phenotypes and develop approaches to eradicate these cells to prevent distant disease development in breast cancer patients

    Gene expression analysis to detect disseminated tumor cells in the bone marrow of triple-negative breast cancer patients predicts metastatic relapse

    Get PDF
    PURPOSE: Disseminated tumor cells (DTCs) in the BM of breast cancer patients predict early disease relapse, but the molecular heterogeneity of these cells is less well characterized. Expression of a 46-gene panel was used to detect DTCs and classify patient BM samples to determine whether a composite set of biomarkers could better predict metastatic relapse. METHODS: Using a high-throughput qRT-PCR assay platform, BM specimens collected from 70 breast cancer patients prior to neoadjuvant therapy were analyzed for the expression of 46 gene transcripts. Gene expression was scored positive (detectable) relative to a reference pool of 16 healthy female control BM specimens. To validate findings from a subset of 28 triple-negative breast cancer (TNBC) patients in the initial 70 patient cohort, an independent set of pre-therapeutic BM specimens from 16 TNBC patients was analyzed. RESULTS: Expression of each of the 46 gene transcripts was highly variable between patients. Individual gene expression was detected in 0-84% of BM specimens analyzed and all but two patient BM specimens expressed at least one transcript. Among a subset of 28 patients with TNBC, positivity of one or more of eight transcripts correlated with time to distant relapse (p = 0.03). In an independent set of 16 triple-negative patient BM samples, detection of five of these same eight gene transcripts also correlated with time to distant relapse (p = 0.03) with a positive predictive value of 89%. CONCLUSIONS: We identified a set of gene transcripts whose detection in the BM of TNBC patients, prior to any treatment intervention, predicts time to first distant relapse, thus identifying a TNBC patient population which requires additional treatment intervention. Because these genes are presumably expressed in populations of DTCs and many encode proteins that are known therapeutic targets (e.g., ERBB2), these results also suggest a potential approach for targeted DTC therapy to mitigate distant metastases in TNBC

    Gene expression analysis to detect disseminated tumor cells in the bone marrow of triple-negative breast cancer patients predicts metastatic relapse

    Get PDF
    PURPOSE: Disseminated tumor cells (DTCs) in the BM of breast cancer patients predict early disease relapse, but the molecular heterogeneity of these cells is less well characterized. Expression of a 46-gene panel was used to detect DTCs and classify patient BM samples to determine whether a composite set of biomarkers could better predict metastatic relapse. METHODS: Using a high-throughput qRT-PCR assay platform, BM specimens collected from 70 breast cancer patients prior to neoadjuvant therapy were analyzed for the expression of 46 gene transcripts. Gene expression was scored positive (detectable) relative to a reference pool of 16 healthy female control BM specimens. To validate findings from a subset of 28 triple-negative breast cancer (TNBC) patients in the initial 70 patient cohort, an independent set of pre-therapeutic BM specimens from 16 TNBC patients was analyzed. RESULTS: Expression of each of the 46 gene transcripts was highly variable between patients. Individual gene expression was detected in 0-84% of BM specimens analyzed and all but two patient BM specimens expressed at least one transcript. Among a subset of 28 patients with TNBC, positivity of one or more of eight transcripts correlated with time to distant relapse (p = 0.03). In an independent set of 16 triple-negative patient BM samples, detection of five of these same eight gene transcripts also correlated with time to distant relapse (p = 0.03) with a positive predictive value of 89%. CONCLUSIONS: We identified a set of gene transcripts whose detection in the BM of TNBC patients, prior to any treatment intervention, predicts time to first distant relapse, thus identifying a TNBC patient population which requires additional treatment intervention. Because these genes are presumably expressed in populations of DTCs and many encode proteins that are known therapeutic targets (e.g., ERBB2), these results also suggest a potential approach for targeted DTC therapy to mitigate distant metastases in TNBC
    • …
    corecore