27 research outputs found

    5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation

    Get PDF
    The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs) for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a) as compared to Ad-MSCs isolated from younger donors (<45 a). 5-hydroxymethylcytosine (5 hmC) and 5-methylcytonsine (5 mC) distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors

    The Topical Effect of rhGDF-5 Embedded in a Collagen–Gelatin Scaffold for Accelerated Wound Healing

    No full text
    The application of exogenous growth factors such as the recombinant human growth and differentiation factor 5 (rhGDF-5) represents a major research topic with great potential for the treatment of complex wounds. In a randomized, controlled minipig study, the topical effect of rhGDF-5 on full-thickness skin defects was evaluated. A total of 60 deep dermal wounds were either treated with rhGDF-5 embedded in an innovative collagen scaffold or another commonly used collagen matrix or left untreated. Wound healing was analyzed by planimetric analysis to determine wound closure over time. After 21 days, the areas of the initial wounds were excised, and the newly formed tissue was examined histologically. In comparison to untreated wounds, all examined matrices accelerated dermal wound healing. The largest acceleration of wound healing was seen with the high-dose rhGDF-5-treated wounds, which, compared to the untreated wounds, accelerated wound healing by 2.58 days, improved the neoepidermal thickness by 32.40 µm, and increased the epidermal cell density by 44.88 cells. The innovative collagen scaffold delivered rhGDF-5 adequately, served as a template to guide proliferating and restructuring cells, and accelerated wound healing. Thus, this composite product offers a novel tool for developing effective wound dressings in regenerative medicine

    The Topical Effect of rhGDF-5 Embedded in a Collagen&ndash;Gelatin Scaffold for Accelerated Wound Healing

    No full text
    The application of exogenous growth factors such as the recombinant human growth and differentiation factor 5 (rhGDF-5) represents a major research topic with great potential for the treatment of complex wounds. In a randomized, controlled minipig study, the topical effect of rhGDF-5 on full-thickness skin defects was evaluated. A total of 60 deep dermal wounds were either treated with rhGDF-5 embedded in an innovative collagen scaffold or another commonly used collagen matrix or left untreated. Wound healing was analyzed by planimetric analysis to determine wound closure over time. After 21 days, the areas of the initial wounds were excised, and the newly formed tissue was examined histologically. In comparison to untreated wounds, all examined matrices accelerated dermal wound healing. The largest acceleration of wound healing was seen with the high-dose rhGDF-5-treated wounds, which, compared to the untreated wounds, accelerated wound healing by 2.58 days, improved the neoepidermal thickness by 32.40 &micro;m, and increased the epidermal cell density by 44.88 cells. The innovative collagen scaffold delivered rhGDF-5 adequately, served as a template to guide proliferating and restructuring cells, and accelerated wound healing. Thus, this composite product offers a novel tool for developing effective wound dressings in regenerative medicine
    corecore