2 research outputs found

    Elastic scattering of electrons and positrons from In-115 atoms over the energy range 1 eV-0.5 GeV

    Get PDF
    We present a theoretical study on the calculations of various cross sections related to the scattering of electrons and positrons from indium atoms. Our calculations cover the energy range 1 eV <= E-i <= 0.5 GeV. We have employed two approaches, applicable for two domains of energy, based on the Dirac partial-wave analysis. In one approach, we have used both the atomic and nuclear potentials to calculate the cross sections for the low and intermediate energies. The other approach, valid for the high-energy scattering, utilizes only the nuclear potential for the phase-shift analysis, and considers the magnetic scattering from the nucleus too. We report the calculations of differential, integral, momentum-transfer and viscosity cross sections along with the spin asymmetries for the elastic scattering of electrons and positrons. Moreover, we have analyzed the critical minima in the elastic differential cross sections, and also computed the absorption and total cross sections. Our results agree reasonably with the available experimental data and other calculations

    Roles of Inorganic Oxide Based HTMs towards Highly Efficient and Long-Term Stable PSC—A Review

    No full text
    In just a few years, the efficiency of perovskite-based solar cells (PSCs) has risen to 25.8%, making them competitive with current commercial technology. Due to the inherent advantage of perovskite thin films that can be fabricated using simple solution techniques at low temperatures, PSCs are regarded as one of the most important low-cost and mass-production prospects. The lack of stability, on the other hand, is one of the major barriers to PSC commercialization. The goal of this review is to highlight the most important aspects of recent improvements in PSCs, such as structural modification and fabrication procedures, which have resulted in increased device stability. The role of different types of hole transport layers (HTL) and the evolution of inorganic HTL including their fabrication techniques have been reviewed in detail in this review. We eloquently emphasized the variables that are critical for the successful commercialization of perovskite devices in the final section. To enhance perovskite solar cell commercialization, we also aimed to obtain insight into the operational stability of PSCs, as well as practical information on how to increase their stability through rational materials and device fabrication
    corecore