14 research outputs found

    Scalable Recovery-based Adaptation on Quadtree Meshes for Advection-Diffusion-Reaction Problems

    Full text link
    We propose a mesh adaptation procedure for Cartesian quadtree meshes, to discretize scalar advection-diffusion-reaction problems. The adaptation process is driven by a recovery-based a posteriori estimator for the L2(Ω)L^2(\Omega)-norm of the discretization error, based on suitable higher order approximations of both the solution and the associated gradient. In particular, a metric-based approach exploits the information furnished by the estimator to iteratively predict the new adapted mesh. The new mesh adaptation algorithm is successfully assessed on different configurations, and turns out to perform well also when dealing with discontinuities in the data as well as in the presence of internal layers not aligned with the Cartesian directions. A cross-comparison with a standard estimate--mark--refine approach and with other adaptive strategies available in the literature shows the remarkable accuracy and parallel scalability of the proposed approach

    lifex-fiber: an open tool for myofibers generation in cardiac computational models

    Get PDF
    Background: Modeling the whole cardiac function involves the solution of several complex multi-physics and multi-scale models that are highly computationally demanding, which call for simpler yet accurate, high-performance computational tools. Despite the efforts made by several research groups, no software for whole-heart fully coupled cardiac simulations in the scientific community has reached full maturity yet.Results: In this work we present life(x)-fiber, an innovative tool for the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, which are the essential building blocks for modeling the electrophysiological, mechanical and electromechanical cardiac function, from single-chamber to whole-heart simulations. life(x)-fiber is the first publicly released module for cardiac simulations based on life(x), an open-source, high-performance Finite Element solver for multi-physics, multi-scale and multi-domain problems developed in the framework of the iHEART project, which aims at making in silico experiments easily reproducible and accessible to a wide community of users, including those with a background in medicine or bio-engineering.Conclusions: The tool presented in this document is intended to provide the scientific community with a computational tool that incorporates general state of the art models and solvers for simulating the cardiac function within a high-performance framework that exposes a user-and developer-friendly interface. This report comes with an extensive technical and mathematical documentation to welcome new users to the core structure of life(x)-fiber and to provide them with a possible approach to include the generated cardiac fibers into more sophisticated computational pipelines. In the near future, more modules will be successively published either as pre-compiled binaries for x86-64 Linux systems or as open source software

    A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to the human left heart

    Get PDF
    : We propose a mathematical and numerical model for the simulation of the heart function that couples cardiac electrophysiology, active and passive mechanics and hemodynamics, and includes reduced models for cardiac valves and the circulatory system. Our model accounts for the major feedback effects among the different processes that characterize the heart function, including electro-mechanical and mechano-electrical feedback as well as force-strain and force-velocity relationships. Moreover, it provides a three-dimensional representation of both the cardiac muscle and the hemodynamics, coupled in a fluid-structure interaction (FSI) model. By leveraging the multiphysics nature of the problem, we discretize it in time with a segregated electrophysiology-force generation-FSI approach, allowing for efficiency and flexibility in the numerical solution. We employ a monolithic approach for the numerical discretization of the FSI problem. We use finite elements for the spatial discretization of partial differential equations. We carry out a numerical simulation on a realistic human left heart model, obtaining results that are qualitatively and quantitatively in agreement with physiological ranges and medical images

    Simultaneous Extraction of Density of States Width, Carrier Mobility and Injection Barriers in Organic Semiconductors

    Get PDF
    The predictive accuracy of state–of–the–art continuum models for charge transport in organic semiconductors is highly dependent on the accurate tuning of a set of parameters whose values cannot be effectively estimated either by direct measurements or by first principles. Fitting the complete set of model parameters at once to experimental data requires to set up extremely complex multi–objective optimization problems whose solution is, on the one hand, overwhelmingly computationally expensive and, on the other, it provides no guarantee of the physical soundness of the value obtained for each individual parameter. In the present study we present a step–by–step procedure that enables to determine the most relevant model parameters, namely the density of states width, the carrier mobility and the injection barrier height, by fitting experimental data from a sequence of relatively simple and inexpensive measurements to suitably devised numerical simulations. At each step of the proposed procedure only one parameter value is sought for, thus highly simplifying the numerical fitting and enhancing its robustness, reliability and accuracy. As a case study we consider a prototypical n-type organic polymer. A very satisfactory fitting of experimental measurements is obtained, and physically meaningful values for the aforementioned parameters are extracted

    A comprehensive and biophysically detailed computational model of the whole human heart electromechanics

    Get PDF
    While ventricular electromechanics is extensively studied, four-chamber heart models have only been addressed recently; most of these works however neglect atrial contraction. Indeed, as atria are characterized by a complex physiology influenced by the ventricular function, developing computational models able to capture the physiological atrial function and atrioventricular interaction is very challenging. In this paper, we propose a biophysically detailed electromechanical model of the whole human heart that considers both atrial and ventricular contraction. Our model includes: i) an anatomically accurate whole-heart geometry; ii) a comprehensive myocardial fiber architecture; iii) a biophysically detailed microscale model for the active force generation; iv) a 0D closed-loop model of the circulatory system; v) the fundamental interactions among the different core models; vi) specific constitutive laws and model parameters for each cardiac region. Concerning the numerical discretization, we propose an efficient segregated-intergrid-staggered scheme and we employ recently developed stabilization techniques that are crucial to obtain a stable formulation in a four-chamber scenario. We are able to reproduce the healthy cardiac function for all the heart chambers, in terms of pressure-volume loops, time evolution of pressures, volumes and fluxes, and three-dimensional cardiac deformation, with unprecedented matching (to the best of our knowledge) with the expected physiology. We also show the importance of considering atrial contraction, fibers-stretch-rate feedback and suitable stabilization techniques, by comparing the results obtained with and without these features in the model. The proposed model represents the state-of-the-art electromechanical model of the iHEART ERC project and is a fundamental step toward the building of physics-based digital twins of the human heart

    lifex-ep: a robust and efficient software for cardiac electrophysiology simulations

    Get PDF
    Background: Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community. Results: This work introduces lifex-ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. lifex-ep employs the monodomain equation to model the heart's electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, lifex-ep integrates the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within lifex-fiber. As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying lifex-ep, along with comprehensive implementation details and instructions for users. lifex-ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of lifex-ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files. Conclusions: lifex-ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. lifex-ep represents a valuable tool for conducting in silico patient-specific simulations

    lifex: a flexible, high performance library for the numerical solution of complex finite element problems

    Get PDF
    Numerical simulations are ubiquitous in mathematics and computational science. Several industrial and clinical applications entail modeling complex multiphysics systems that evolve over a variety of spatial and temporal scales. This study introduces the design and capabilities of lifex, an open source C++ library for high performance finite element simulations of multiphysics, multiscale, and multidomain problems. lifex meets the emerging need for versatile, efficient computational tools that are easily accessed by users and developers. We showcase its flexibility and effectiveness on a number of illustrative examples and advanced applications of use and demonstrate its parallel performance up to thousands of cores

    Scalable recovery-based adaptation on Cartesian quadtree meshes for advection-diffusion-reaction problems

    No full text
    We propose a mesh adaptation procedure for Cartesian quadtree meshes, to discretize scalar advection-diffusion-reaction problems. The adapta- tion process is driven by a recovery-based a posteriori estimator for the L2(Ω)- norm of the discretization error, based on suitable higher order approximations of both the solution and the associated gradient. In particular, a metric-based approach exploits the information provided by the estimator to iteratively pre- dict the new adapted mesh. The new mesh adaptation algorithm is successfully assessed on different configurations and performs well when dealing with dis- continuities in the data as well as in the presence of internal layers not aligned with the Cartesian directions. A cross-comparison with a standard estimate- mark-refine approach and with other adaptive strategies available in the liter- ature shows the noteworthy accuracy and parallel scalability of the proposed approach

    lifex-cfd: an open-source computational fluid dynamics solver for cardiovascular applications

    No full text
    Computational fluid dynamics (CFD) is an important tool for the simulation of the cardiovascular function and dysfunction. Due to the complexity of the anatomy, the transitional regime of blood flow in the heart, and the strong mutual influence between the flow and the physical processes involved in the heart function, the development of accurate and efficient CFD solvers for cardiovascular flows is still a challenging task. In this paper we present lifeImage 1-cfd, an open-source CFD solver for cardiovascular simulations based on the lifeImage 1 finite element library, written in modern C++ and exploiting distributed memory parallelism. We model blood flow in both physiological and pathological conditions via the incompressible Navier-Stokes equations, accounting for moving cardiac valves, moving domains, and transition-to-turbulence regimes. In this paper, we provide an overview of the underlying mathematical formulation, numerical discretization, implementation details and examples on how to use lifeImage 1-cfd. We verify the code through rigorous convergence analyses, and we show its almost ideal parallel speedup. We demonstrate the accuracy and reliability of the numerical methods implemented through a series of idealized and patient-specific vascular and cardiac simulations, in different physiological flow regimes. The lifeImage 1-cfd source code is available under the LGPLv3 license, to ensure its accessibility and transparency to the scientific community, and to facilitate collaboration and further developments

    lifex-cfd: an open-source computational fluid dynamics solver for cardiovascular applications

    Full text link
    Computational fluid dynamics (CFD) is an important tool for the simulation of the cardiovascular function and dysfunction. Due to the complexity of the anatomy, the transitional regime of blood flow in the heart, and the strong mutual influence between the flow and the physical processes involved in the heart function, the development of accurate and efficient CFD solvers for cardiovascular flows is still a challenging task. In this paper we present lifex-cfd: an open-source CFD solver for cardiovascular simulations based on the lifex finite element library, written in modern C++ and exploiting distributed memory parallelism. We model blood flow in both physiological and pathological conditions via the incompressible Navier-Stokes equations, accounting for moving cardiac valves, moving domains, and transition-to-turbulence regimes. In this paper, we provide an overview of the underlying mathematical formulation, numerical discretization, implementation details and instructions for use of lifex-cfd. The code has been verified through rigorous convergence analyses, and we show its almost ideal parallel speedup. We demonstrate the accuracy and reliability of the numerical methods implemented through a series of idealized and patient-specific vascular and cardiac simulations, in different physiological flow regimes. The lifex-cfd source code is available under the LGPLv3 license, to ensure its accessibility and transparency to the scientific community, and to facilitate collaboration and further developments
    corecore