2,043 research outputs found
Blue Dots Team Transits Working Group Review
Transiting planet systems offer an unique opportunity to observationally
constrain proposed models of the interiors (radius, composition) and
atmospheres (chemistry, dynamics) of extrasolar planets. The spectacular
successes of ground-based transit surveys (more than 60 transiting systems
known to-date) and the host of multi-wavelength, spectro-photometric follow-up
studies, carried out in particular by HST and Spitzer, have paved the way to
the next generation of transit search projects, which are currently ongoing
(CoRoT, Kepler), or planned. The possibility of detecting and characterizing
transiting Earth-sized planets in the habitable zone of their parent stars
appears tantalizingly close. In this contribution we briefly review the power
of the transit technique for characterization of extrasolar planets, summarize
the state of the art of both ground-based and space-borne transit search
programs, and illustrate how the science of planetary transits fits within the
Blue Dots perspective.Comment: 9 pages, 3 figures, to be published in the proceedings (ASP Conf.
Ser.) of the "Pathways Towards Habitable Planets" conference, held in
Barcelona (14-18 Sep 2009
Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships
Due to the geographical location and paleobiogeography of the Canary Islands, the
seaweed flora contains macroalgae with different distributional patterns. In this contribution, the biogeographical relations of several new records of deep-water macroalgae recently collected around the Canarian archipelago are discussed. These are Bryopsidella neglecta (Berthotd) Rietema,Discosporangium mesarthrocarpum (Meneghini) Hauck, Hincksia onslowensis (Amsler et Kapraun)P.C. Silva, Syringoderma floridana Henry, Peyssonnelia harveyana J. Agardh, Cryptonemia seminervis(C. Agardh) J. Agardh, Botryodadia wynnei Ballantine, Gloiocladia blomquistii (Searles) R. E.Norris, PIahchrysis peltata (W. R. Taylor) P. Huv4 et H. Huv4, Leptofauchea brasiliensis Joly, and Sarcodiotheca divaricata W. R. Taylor. These new records, especially those in the Florideophyceae,support the strong affinity of the Canary Islands seaweed flora with the warm-temperate Mediterranean-Atlantic region. Some species are recorded for the first time from the east coast of the Atlantic Ocean, enhancing the biogeographic relations of the Canarian marine flora with that of the western Atlantic regions
Primordial Black Hole Formation during First-Order Phase Transitions
Primordial black holes (PBHs) may form in the early universe when
pre-existing adiabatic density fluctuations enter into the cosmological horizon
and recollapse. It has been suggested that PBH formation may be facilitated
when fluctuations enter into the horizon during a strongly first-order phase
transition which proceeds in approximate equilibrium. We employ
general-relativistic hydrodynamics numerical simulations in order to follow the
collapse of density fluctuations during first-order phase transitions. We find
that during late stages of the collapse fluctuations separate into two regimes,
an inner part existing exclusively in the high-energy density phase with energy
density , surrounded by an outer part which exists
exclusively in the low-energy density phase with energy density , where is the latent heat of the transition. We confirm that the
fluctuation density threshold required for the
formation of PBHs during first-order transitions decreases with increasing
and falls below that for PBH formation during ordinary radiation dominated
epochs. Our results imply that, in case PBHs form at all in the early universe,
their mass spectrum is likely dominated by the approximate horizon masses
during epochs when the universe undergoes phase transitions.Comment: 8 pages, 4 figures, revtex style, submitted to PR
Fake supersymmetry versus Hamilton-Jacobi
We explain when the first-order Hamilton-Jacobi equations for black holes
(and domain walls) in (gauged) supergravity, reduce to the usual first-order
equations derived from a fake superpotential. This turns out to be equivalent
to the vanishing of a newly found constant of motion and we illustrate this
with various examples. We show that fake supersymmetry is a necessary condition
for having physically sensible extremal black hole solutions. We furthermore
observe that small black holes become scaling solutions near the horizon. When
combined with fake supersymmetry, this leads to a precise extension of the
attractor mechanism to small black holes: The attractor solution is such that
the scalars move on specific curves, determined by the black hole charges, that
are purely geodesic, although there is a non-zero potential.Comment: 20 pages, v2: Typos corrected, references adde
Anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time and uniaxial small-scale anisotropy
The influence of uniaxial small-scale anisotropy on the stability of the
scaling regimes and on the anomalous scaling of the structure functions of a
passive scalar advected by a Gaussian solenoidal velocity field with finite
correlation time is investigated by the field theoretic renormalization group
and operator product expansion within one-loop approximation. Possible scaling
regimes are found and classified in the plane of exponents ,
where characterizes the energy spectrum of the velocity field in the
inertial range , and is related to the
correlation time of the velocity field at the wave number which is scaled
as . It is shown that the presence of anisotropy does not disturb
the stability of the infrared fixed points of the renormalization group
equations which are directly related to the corresponding scaling regimes. The
influence of anisotropy on the anomalous scaling of the structure functions of
the passive scalar field is studied as a function of the fixed point value of
the parameter which represents the ratio of turnover time of scalar field
and velocity correlation time. It is shown that the corresponding one-loop
anomalous dimensions, which are the same (universal) for all particular models
with concrete value of in the isotropic case, are different (nonuniversal)
in the case with the presence of small-scale anisotropy and they are continuous
functions of the anisotropy parameters, as well as the parameter . The
dependence of the anomalous dimensions on the anisotropy parameters of two
special limits of the general model, namely, the rapid-change model and the
frozen velocity field model, are found when and ,
respectively.Comment: revtex, 25 pages, 37 figure
Discovery and Characterization of a Caustic Crossing Microlensing Event in the SMC
We present photometric observations and analysis of the second microlensing
event detected towards the Small Magellanic Cloud (SMC), MACHO Alert 98-SMC-1.
This event was detected early enough to allow intensive observation of the
lightcurve. These observations revealed 98-SMC-1 to be the first caustic
crossing, binary microlensing event towards the Magellanic Clouds to be
discovered in progress.
Frequent coverage of the evolving lightcurve allowed an accurate prediction
for the date of the source crossing out of the lens caustic structure. The
caustic crossing temporal width, along with the angular size of the source
star, measures the proper motion of the lens with respect to the source, and
thus allows an estimate of the location of the lens. Lenses located in the
Galactic halo would have a velocity projected to the SMC of v^hat ~1500 km/s,
while an SMC lens would typically have v^hat ~60 km/s.
We have performed a joint fit to the MACHO/GMAN data presented here,
including recent EROS data of this event. These joint data are sufficient to
constrain the time for the lens to move an angle equal to the source angular
radius; 0.116 +/- 0.010 days. We estimate a radius for the lensed source of 1.4
+/- 0.1 R_sun. This yields a projected velocity of v^hat = 84 +/- 9 km/s. Only
0.15% of halo lenses would be expected to have a v^hat value at least as small
as this, while 31% of SMC lenses would be expected to have v^hat as large as
this. This implies that the lensing system is more likely to reside in the SMC
than in the Galactic halo.Comment: 16 pages, including 3 tables and 3 figures; submitted to The
Astrophysical Journa
The MACHO Project: Microlensing Detection Efficiency
The MACHO project is a search for dark matter in the form of massive compact
halo objects (MACHOs). The project has photometrically monitored tens of
millions of stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud
(SMC), and Galactic bulge in search of rare gravitational microlensing events
caused by these otherwise invisible objects. In 5.7 years of observations
toward the LMC some 13-17 microlensing events have been observed by the MACHO
survey, allowing powerful statements to be made about the nature of the dark
population in the halo of our Galaxy. A critical component of these statements
is an accurate determination of the survey's detection efficiency. The
detection efficiency is a complicated function of temporal sampling, stellar
crowding (the luminosity function), image quality, photometry, time-series
analysis, and criteria used to select the microlensing candidates. Such a
complex interdependence is most naturally solved using a Monte Carlo approach.
Here we describe the details of the Monte Carlo used to calculate the
efficiency presented in the MACHO 5.7-year LMC results. Here we correct several
shortcomings of past determinations, including (1) adding fainter source stars
(2.5 magnitudes below our faintest detected "stars"), (2) an up-to-date
luminosity function for the LMC, (3) better sampling of real images in both
stellar density and observing conditions, (4) an improved scheme for adding
artificial microlensing onto a random sample of real lightcurves, and many
other improvements. [Abridged]Comment: 32 pages, Latex with 16 postscript figures, submitted to ApJ
HATSouth: a global network of fully automated identical wide-field telescopes
HATSouth is the world's first network of automated and homogeneous telescopes
that is capable of year-round 24-hour monitoring of positions over an entire
hemisphere of the sky. The primary scientific goal of the network is to
discover and characterize a large number of transiting extrasolar planets,
reaching out to long periods and down to small planetary radii. HATSouth
achieves this by monitoring extended areas on the sky, deriving high precision
light curves for a large number of stars, searching for the signature of
planetary transits, and confirming planetary candidates with larger telescopes.
HATSouth employs 6 telescope units spread over 3 locations with large longitude
separation in the southern hemisphere (Las Campanas Observatory, Chile; HESS
site, Namibia; Siding Spring Observatory, Australia). Each of the HATSouth
units holds four 0.18m diameter f/2.8 focal ratio telescope tubes on a common
mount producing an 8.2x8.2 arcdeg field, imaged using four 4Kx4K CCD cameras
and Sloan r filters, to give a pixel scale of 3.7 arcsec/pixel. The HATSouth
network is capable of continuously monitoring 128 square arc-degrees. We
present the technical details of the network, summarize operations, and present
weather statistics for the 3 sites. On average each of the 6 HATSouth units has
conducted observations on ~500 nights over a 2-year time period, yielding a
total of more than 1million science frames at 4 minute integration time, and
observing ~10.65 hours per day on average. We describe the scheme of our data
transfer and reduction from raw pixel images to trend-filtered light curves and
transiting planet candidates. Photometric precision reaches ~6 mmag at 4-minute
cadence for the brightest non-saturated stars at r~10.5. We present detailed
transit recovery simulations to determine the expected yield of transiting
planets from HATSouth. (abridged)Comment: 25 pages, 11 figures, 1 table, submitted to PAS
- âŚ