1,489 research outputs found

    Non-Fermi liquid behavior in Kondo models

    Full text link
    Despite the fact that the low energy behavior of the basic Kondo model cannot be studied perturbatively it was eventually shown by Wilson, Anderson, Nozieres and others to have a simple "local Fermi liquid theory" description. That is, electronic degrees of freedom become effectively non-interacting in the zero energy limit. However, generalized versions of the Kondo model involving more than one channel or impurity may exhibit low energy behavior of a less trivial sort which can, nonetheless, be solved exactly using either Bethe ansatz or conformal field theory and bosonization techniques. Now the low energy limit exhibits interacting many body behavior. For example, processes in which a single electron scatters off the impurity into a multi electron-hole state have a non-vanishing (and sometimes large) amplitude at zero energy. This corresponds to a rare solveable example of non-Fermi liquid behavior. Essential features of these phenomena are reviewed.Comment: A brief review submitted to the special issue of J. Phys. Soc. of Japan, "Kondo effect -- 40 years after the discovery

    Critical Nature of Non-Fermi Liquid in Spin 3/2 Multipolar Kondo Model

    Full text link
    A multipolar Kondo model of an impurity spin S_I=3/2 interacting with conduction electrons with spin s_c=3/2 is investigated using boundary conformal field theory. A two-channel Kondo (2CK) -like non-Fermi liquid (NFL) under the particle-hole symmetry is derived explicitly using a ``superspin absorption'' in the sector of a hidden symmetry, SO(5). We discuss the difference between the usual spin-1/2 2CK NFL fixed point and the present one. In particular, we find that, unlike the usual 2CK model, the low temperature impurity specific heat is proportional to temperature.Comment: 4 pages, 2 figure

    Phase diagram of a 1 dimensional spin-orbital model

    Full text link
    We study a 1 dimensional spin-orbital model using both analytical and numerical methods. Renormalization group calculations are performed in the vicinity of a special integrable point in the phase diagram with SU(4) symmetry. These indicate the existence of a gapless phase in an extended region of the phase diagram, missed in previous studies. This phase is SU(4) invariant at low energies apart from the presence of different velocities for spin and orbital degrees of freedom. The phase transition into a gapped dimerized phase is in a generalized Kosterlitz-Thouless universality class. The phase diagram of this model is sketched using the density matrix renormalization group technique.Comment: 11 pages, 5 figures, new references adde

    Field Theories of Frustrated Heisenberg Antiferromagnets

    Full text link
    We study the Heisenberg antiferromagnetic chain with both dimerization and frustration. The classical ground state has three phases: a Neel phase, a spiral phase and a colinear phase. In each phase, we discuss a non-linear sigma model field theory governing the low energy excitations. We study the theory in the spiral phase in detail using the renormalization group. The field theory, based on an SO(3)SO(3) matrix-valued field, becomes SO(3)×SO(3)SO(3) \times SO(3) and Lorentz invariant at long distances where the elementary excitation is analytically known to be a massive spin-1/21/2 doublet. The field theory supports Z2 Z_2 ~ solitons which lead to a double degeneracy in the spectrum for half-integer spins (when there is no dimerization).Comment: Latex, 12 pages, 2 figures (gzipped and uuencoded

    Solution of two channel spin-flavor Kondo model

    Full text link
    We investigate a model where an impurity couples to both the spin and the flavor currents of the two channel conduction electrons. This model can be used as a prototype model of a magnetic impurity tunneling between two sites in a metal and of some heavy fermion systems where the ground state of the impurity has a fourfold degeneracy. The system is shown to flow to a doubly degenerate non fermi-liquid(NFL) fixed point; the thermodynamic quantities show NFL behaviors, but the transport quantities show fermi liquid (FL) behaviors . A spin-flavor coupling double tensor term is shown to drive the system to one of the two singlet FL fixed points. The relation with SU(4) Coqblin-Schrieffer model is studied. The implications on the possible experiments are given.Comment: 11 pages, REVTEX, no figures. To appear in Phys. Rev. B (Rapid Comm.) July 1, 199

    S(k) for Haldane Gap Antiferromagnets: Large-scale Numerical Results vs. Field Theory and Experiment

    Full text link
    The structure function, S(k), for the s=1, Haldane gap antiferromagnetic chain, is measured accurately using the recent density matrix renormalization group method, with chain-length 100. Excellent agreement with the nonlinear σ\sigma model prediction is obtained, both at kπk\approx \pi where a single magnon process dominates and at k0k\approx 0 where a two magnon process dominates. We repeat our calculation with crystal field anisotropy chosen to model NENP, obtaining good agreement with both field theory predictions and recent experiments. Correlation lengths, gaps and velocities are determined for both polarizations.Comment: 11 pages, 3 postscript figures included, REVTEX 3.0, UBCTP-93-02

    Influence of lattice distortions in classical spin systems

    Full text link
    We investigate a simple model of a frustrated classical spin chain coupled to adiabatic phonons under an external magnetic field. A thorough study of the magnetization properties is carried out both numerically and analytically. We show that already a moderate coupling with the lattice can stabilize a plateau at 1/3 of the saturation and discuss the deformation of the underlying lattice in this phase. We also study the transition to saturation where either a first or second order transition can occur, depending on the couplings strength.Comment: Submitted to Phys. Rev.

    Abelian bosonization approach to quantum impurity problems

    Full text link
    Using Abelian Bosonization, we develop a simple and powerful method to calculate the correlation functions of the two channel Kondo model and its variants. The method can also be used to identify all the possible boundary fixed points and their maximum symmetry, to calculate straightforwardly the finite size spectra, to demonstrate the physical picture at the boundary explicitly. Comparisons with Non-Abelian Bosonization method are made. Some fixed points corresponding to 4 pieces of bulk fermions coupled to s=1/2 impurity are listed.Comment: 12 pages, REVTEX, 1 Table, no figures. To appear in Phys. Rev. Letts. July 21, 199

    The S=1/2 chain in a staggered field: High-energy bound-spinon state and the effects of a discrete lattice

    Full text link
    We report an experimental and theoretical study of the antiferromagnetic S=1/2 chain subject to uniform and staggered fields. Using inelastic neutron scattering, we observe a novel bound-spinon state at high energies in the linear chain compound CuCl2 * 2((CD3)2SO). The excitation is explained with a mean-field theory of interacting S=1/2 fermions and arises from the opening of a gap at the Fermi surface due to confining spinon interactions. The mean-field model also describes the wave-vector dependence of the bound-spinon states, particularly in regions where effects of the discrete lattice are important. We calculate the dynamic structure factor using exact diagonalization of finite length chains, obtaining excellent agreement with the experiments.Comment: 16 pages, 7 figures, accepted by Phys. Rev.

    Bosonization in the two-channel Kondo model

    Full text link
    The bosonization of the S=1/2S=1/2 anisotropic two-channel Kondo model is shown to yield two equivalent representations of the original problem. In a straight forward extension of the Emery-Kivelson approach, the interacting resonant level model previously derived by the Anderson-Yuval technique is obtained. In addition, however, a ``(σ\sigma,τ\tau)'' description is also found. The strong coupling fixed point of the (σ\sigma,τ\tau) model was originally postulated to be related to the intermediate coupling fixed point of the two-channel Kondo model. The equivalence of the σ\sigma,τ\tau model to the two-channel Kondo model is formally established. A summary of what one may learn from a simple study of these different representations is also given.Comment: 5 pages, latex (uses revtex and epsf macros) with 1 postscript figur
    corecore