3 research outputs found

    Zika Virus Infection Disrupts Astrocytic Proteins Involved in Synapse Control and Axon Guidance

    Get PDF
    The first human Zika virus (ZIKV) outbreak was reported in Micronesia in 2007, followed by one in Brazil in 2015. Recent studies have reported cases in Europe, Oceania and Latin America. In 2016, ZIKV transmission was also reported in the US and the World Health Organization declared it a Public Health Emergency of International Concern. Because various neurological conditions are associated with ZIKV, such as microcephaly, Guillain-Barré syndrome, and other disorders of both the central and peripheral nervous systems, including encephalopathy, (meningo)encephalitis and myelitis, and because of the lack of reliable patient diagnosis, numerous ongoing studies seek to understand molecular mechanisms underlying ZIKV pathogenesis. Astrocytes are one of the most abundant cells in the CNS. They control axonal guidance, synaptic signaling, neurotransmitter trafficking and maintenance of neurons, and are targeted by ZIKV. In this study, we used a newly developed multiplexed aptamer-based technique (SOMAScan) to examine > 1300 human astrocyte cell proteins. We identified almost 300 astrocyte proteins significantly dysregulated by ZIKV infection that span diverse functions and signaling pathways, including protein translation, synaptic control, cell migration and differentiation

    HLA-A, HSPA5, IGFBP5 and PSMA2 Are Restriction Factors for Zika Virus Growth in Astrocytic Cells

    No full text
    (1) Background: Zika virus (ZIKV), an arbo-flavivirus, is transmitted via Aeges aegyptii mosquitoes Following its major outbreaks in 2013, 2014 and 2016, WHO declared it a Public Health Emergency of International Concern. Symptoms of ZIKV infection include acute fever, conjunctivitis, headache, muscle & joint pain and malaise. Cases of its transmission also have been reported via perinatal, sexual and transfusion transmission. ZIKV pathologies include meningo-encephalitis and myelitis in the central nervous system (CNS) and Guillain-Barré syndrome and acute transient polyneuritis in the peripheral nervous system (PNS). Drugs like azithromycin have been tested as inhibitors of ZIKV infection but no vaccines or treatments are currently available. Astrocytes are the most abundant cells in the CNS and among the first cells in CNS infected by ZIKV; (2) Methods: We previously used SOMAScan proteomics to study ZIKV-infected astrocytic cells. Here, we use mass spectrometric analyses to further explain dysregulations in the cellular expression profile of glioblastoma astrocytoma U251 cells. We also knocked down (KD) some of the U251 cellular proteins using siRNAs and observed the impact on ZIKV replication and infectivity; (3) Results & Conclusions: The top ZIKV dysregulated cellular networks were antimicrobial response, cell death, and energy production while top dysregulated functions were antigen presentation, viral replication and cytopathic impact. Th1 and interferon signaling pathways were among the top dysregulated canonical pathways. siRNA-mediated KD of HLA-A, IGFBP5, PSMA2 and HSPA5 increased ZIKV titers and protein synthesis, indicating they are ZIKV restriction factors. ZIKV infection also restored HLA-A expression in HLA-A KD cells by 48 h post-infection, suggesting interactions between this gene product and ZIKV
    corecore