3,434 research outputs found

    Cherenkov-like shock waves associated with surpassing the light velocity barrier

    Get PDF
    The effects arising from accelerated and decelerated motion of a point charge inside a medium are studied. The motion is manifestly relativistic and may be produced by a constant uniform electric field. It is shown that in addition to the bremsstrahlung and Cherenkov shock waves, the electromagnetic shock wave arises when the charge particle velocity coincides with the light velocity in the medium. For the accelerated motion this shock wave forming an indivisible entity with the Cherenkov shock wave arrives after the arrival of the bremsstrahlung shock wave. For the decelerated motion the above shock wave detaches from the charge at the moment when its velocity coincides with the light velocity in the medium. This wave existing even after termination of the charge motion of the charge propagates with the light velocity in the medium. It has the same singularity as the Cherenkov shock and is more singular than the bremsstrahlung shock wave. The space-time regions, where these shock waves exist, and conditions under which they can be observed are determined.Comment: 15 pages, 4 figures, to be published in Canadian J. Phy

    Fine structure of Vavilov-Cherenkov radiation near the Cherenkov threshold

    Full text link
    We analyze the Vavilov-Cherenkov radiation (VCR) in a dispersive nontransparent dielectric air-like medium both below and above the Cherenkov threshold, in the framework of classical electrodynamics. It is shown that the transition to the subthreshold energies leads to the destruction of electromagnetic shock waves and to the sharp reduction of the frequency domain where VCR is emitted. The fine wake-like structure of the Vavilov-Cherenkov radiation survives and manifests the existence of the subthreshold radiation in the domain of anomalous dispersion. These domains can approximately be defined by the two phenomenological parameters of the medium, namely, the effective frequency of oscillators and the damping describing an interaction with the other degrees of freedom.Comment: 9 pages, 6 figure

    Restoring the full velocity field in the gaseous disk ofthe spiral galaxy NGC 157

    Get PDF
    We analyse the line-of-sight velocity field of ionized gas in the spiral galaxy NGC 157 which has been obtained in the H\alpha emission at the 6m telescope of SAO RAS. The existence of systematic deviations of the observed gas velocities from pure circular motion is shown. A detailed investigation of these deviations is undertaken by applying a Fourier analysis of the azimuthal distributions of the line-of-sight velocities at different distances from the galactic center. As a result of the analysis, all the main parameters of the wave spiral pattern are determined: the corotation radius, the amplitudes and phases of the gas velocity perturbations at different radii, and the velocity of circular rotation of the disk corrected for the velocity perturbations due to spiral arms. At a high confidence level, the presence of the two giant anticyclones in the reference frame rotating with the spiral pattern is shown; their sizes and the localization of their centers are consistent with the results of the analytic theory and of numerical simulations. Besides the anticyclones, the existence of cyclones in residual velocity fields of spiral galaxies is predicted. In the reference frame rotating with the spiral pattern these cyclones have to reveal themselves in galaxies where a radial gradient of azimuthal residual velocity is steeper than that of the rotation velocity (abridged).Comment: 23 pages including 25 eps-figures. Accepted for publication in A&
    corecore