2 research outputs found

    Strange Hadron Resonances and QGP Freeze-out

    Get PDF
    We describe how the abundance and distribution of hyperon resonances can be used to probe freeze-out conditions. We demonstrate that resonance yields allow us to measure the time scales of chemical and thermal freeze-outs. This should permit a direct differentiation between the explosive sudden, and staged adiabatic freeze-out scenarios.Comment: 8 pages including 4 figures, in Proceedings of Strange Quark Matter 2001, Frankfurt, submitted to J. Phys. G version 2: refernces corrected/added, numercial corrections in figures 2,3,

    Strangeness and Quark Gluon Plasma

    Full text link
    A brief summary of strangeness mile stones is followed by a chemical non-equilibrium statistical hadronization analysis of strangeness results at SPS and RHIC. Strange particle production in AA interactions at \sqrt{s_{NN}}\ge 8.6 GeV can be understood consistently as originating from the deconfined quark--gluon plasma in a sudden hadronization process. Onset of QGP formation as function of energy is placed in the beam energy interval 10--30A GeV/c. Strangeness anomalies at LHC are described.Comment: 30 pages including numerouse figures, tables. Opening Lecture: Strangeness and Quark Gluon Plasma -- what has been learned so far and where do we go at SQM2003, North Carolina, March 2003, submitted to J. Phys.
    corecore