702 research outputs found

    Interacting Dirac Materials

    Full text link
    We investigate the extent to which the class of Dirac materials in two-dimensions provides general statements about the behavior of both fermionic and bosonic Dirac quasiparticles in the interacting regime. For both quasiparticle types, we find common features for the interaction induced renormalization of the conical Dirac spectrum. We perform the perturbative renormalization analysis and compute the self-energy for both quasiparticle types with different interactions and collate previous results from the literature whenever necessary. Guided by the systematic presentation of our results in Table~\ref{Summary}, we conclude that long-range interactions generically lead to an increase of the slope of the single-particle Dirac cone, whereas short-range interactions lead to a decrease. The quasiparticle statistics does not qualitatively impact the self-energy correction for long-range repulsion but does affect the behavior of short-range coupled systems, giving rise to different thermal power-law contributions. The possibility of a universal description of the Dirac materials based on these features is also mentioned.Comment: 19 pages and 12 Figures; Contains 6 Appendice

    Brownian Motion and Quantum Dynamics of Magnetic Monopoles in Spin Ice

    Get PDF
    Spin ice illustrates many unusual magnetic properties, including zero point entropy, emergent monopoles and a quasi liquid-gas transition. To reveal the quantum spin dynamics that underpin these phenomena is an experimental challenge. Here we show how crucial information is contained in the frequency dependence of the magnetic susceptibility and in its high frequency or adiabatic limit. These measures indicate that monopole diffusion is strictly Brownian but is underpinned by spin tunnelling and is influenced by collective monopole interactions. We also find evidence of driven monopole plasma oscillations in weak applied field, and unconventional critical behaviour in strong applied field. Our results resolve contradictions in the present understanding of spin ice, reveal unexpected physics and establish adiabatic susceptibility as a revealing characteristic of exotic spin systems.Comment: Main : 12 pages, 6 figures. Supplementary Information : 10 pages, 7 figures. Manuscript submitte

    Scaling of magnetic fluctuations near a quantum phase transition

    Full text link
    We use inelastic neutron scattering to measure the magnetic fluctuations in a single crystal of the heavy fermion alloy CeCu_5.9Au_0.1 close to the antiferromagnetic quantum critical point. The energy and temperature-dependent spectra obey (E/T) scaling at Q near (1,0,0). The neutron data and earlier bulk susceptibility are consistent with the form 1/X ~ f(Q)+(-iE+bT)^a, with an anomalous exponent a=0.8. We confirm the earlier observation of quasi-low dimensionality and show how both the magnetic fluctuations and the thermodynamics can be understood in terms of a quantum Lifshitz point.Comment: Latex file with two postscript figure

    Macroscopic Signature of Protected Spins in a Dense Frustrated Magnet

    Get PDF
    The inability of systems of interacting objects to satisfy all constraints simultaneously leads to frustration. A particularly important consequence of frustration is the ability to access certain protected parts of a system without disturbing the others. For magnets such "protectorates'' have been inferred from theory and from neutron scattering, but their practical consequences have been unclear. We show that a magnetic analogue of optical hole-burning can address these protected spin clusters in a well-known, geometrically frustrated Heisenberg system, gadolinium gallium garnet. Our measurements additionally provide a resolution of a famous discrepancy between the bulk magnetometry and neutron diffraction results for this magnetic compound

    A Comparison of the High-Frequency Magnetic Fluctuations in Insulating and Superconducting La2-xSrxCuO4

    Full text link
    Inelastic neutron scattering performed at a spallation source is used to make absolute measurements of the dynamic susceptibility of insulating La2CuO4 and superconducting La2-xSrxCuO4 over the energy range 15<EN<350 meV. The effect of Sr doping on the magnetic excitations is to cause a large broadening in wavevector and a substantial change in the spectrum of the local spin fluctuations. Comparison of the two compositions reveals a new energy scale of 22 meV in La1.86Sr0.14CuO4.Comment: RevTex, 7 Pages, 4 postscript figure

    String Picture of a Frustrated Quantum Magnet and Dimer Model

    Full text link
    We map a geometrically frustrated Ising system with transversal field generated quantum dynamics to a strongly anisotropic lattice of non-crossing elastic strings. The combined effect of frustration, quantum and thermal spin fluctuations is explained in terms of a competition between intrinsic lattice pinning of strings and topological defects in the lattice. From this picture we obtain analytic results for correlations and the phase diagram which agree nicely with recent simulations.Comment: 4 pages, 2 figure

    High Resolution Study of Magnetic Ordering at Absolute Zero

    Get PDF
    High fidelity pressure measurements in the zero temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the exactitude that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.Comment: 5 pages, 4 figure

    Hysteresis of Backflow Imprinted in Collimated Jets

    Get PDF
    We report two different types of backflow from jets by performing 2D special relativistic hydrodynamical simulations. One is anti-parallel and quasi-straight to the main jet (quasi-straight backflow), and the other is bent path of the backflow (bent backflow). We find that the former appears when the head advance speed is comparable to or higher than the local sound speed at the hotspot while the latter appears when the head advance speed is slower than the sound speed bat the hotspot. Bent backflow collides with the unshocked jet and laterally squeezes the jet. At the same time, a pair of new oblique shocks are formed at the tip of the jet and new bent fast backflows are generated via these oblique shocks. The hysteresis of backflow collisions is thus imprinted in the jet as a node and anti-node structure. This process also promotes broadening of the jet cross sectional area and it also causes a decrease in the head advance velocity. This hydrodynamic process may be tested by observations of compact young jets.Comment: 9 pages, 5 figures, accepted for publication in ApJ
    • …
    corecore