21 research outputs found

    Green synthesis of zinc oxide nanoparticles from Wodyetia bifurcata fruit peel extract: multifaceted potential in wound healing, antimicrobial, antioxidant, and anticancer applications

    Get PDF
    This study focuses on the synthesis, characterization, and use of zinc oxide nanoparticles (ZnONPs) derived from W. bifurcata fruit peel extract. ZnONPs are frequently synthesized utilizing a green technique that is both cost-effective and ecologically friendly. ZnONPs were characterized utilizing analytical techniques. Ultra Violet visible (UV-Vis) spectra showed peaks at 364 nm, confirming the production of ZnONPs. Scanning Electron Microscope analysis indicated that the nanoparticles generated were spherical/agglomerated, with diameters ranging from 11 to 25 nm. FTIR spectroscopy was used to identify the particular functional groups responsible for the nanoparticles’ reduction, stabilization, and capping. Phytochemical analysis of the extract revealed that flavonoids, saponins, steroids, triterpenoids, and resins were present. The antibacterial activity of W. bifurcata synthesised nanoparticles was evaluated against pathogenic bacteria. The ZnONPs antioxidant activity was assessed using DPPH assay. The in vitro cytotoxicity was assessed against prostate cancer PC3 cells. The wound healing potential was assessed by employing in vitro scratch assay and in vivo excision model in Wistar rats. Because of its environmentally benign production, low toxicity, and biocompatibility, ZnONPs exhibited potential antibacterial, antioxidant, anticancer, and wound healing activities, indicating that they could be used in cancer treatment and wound management. Further study is required to examine the fundamental mechanisms and evaluate the safety and effectiveness of the test sample in clinical situations

    Exploring the therapeutic mechanism of potential phytocompounds from Kalanchoe pinnata in the treatment of diabetes mellitus by integrating network pharmacology, molecular docking and simulation approach

    No full text
    Since ancient times, bioactive phytocompounds from different parts of medicinal plants have been used to heal various disease ailments and they are now regarded as a valuable source of disease prevention globally. Kalanchoe pinnata is a member of the Crassulaceae family; it has a long history of usage in traditional ayurvedic treatment. Analysis of bioactive compounds for their potential anti-type-2 diabetes mellitus (T2DM) mechanism along with in-vitro and in-silico approaches was studied in the present research. The alpha-amylase and alpha-glucosidase inhibitory activity of methanolic extract of Kalanchoe pinnata (α-amylase: IC50 29.50 ± 0.04 μg/ml; α-glucosidase IC50 32.04 ± 0.35 μg/ml) exhibit a high degree of similarity to the standard drug acarbose (IC50 35.82 ± 0.14 μg/ml). Different biological databases were used to list phytocompounds from the plant, and ADME analysis using swissADME was carried out to screen compounds that obeyed the Lipinski rule of 5 and were employed further. STRING and KEGG pathway analysis was performed for gene enrichment analysis followed by network pharmacology to identify key target proteins involved in DM. AMY2A, NOX4, RPS6KA3, ADRA2A, CHRM5, and IL2 were identified as core targets for luteolin, kaempferol, alpha amyrin, stigmasterol compounds by modulating neuroactive ligand interaction, P13-AKT, MAPK, and PPAR signaling pathways. Molecular docking was performed to study the binding affinity among bioactive compounds of K. pinnata against aldose reductase, alpha-amylase, alpha-glucosidase, and dipeptidyl peptidase IV. Alpha-amylase-friedelin [FRI] and alpha-amylase-acarbose [STD] complexes were subjected to molecular simulation for a 200 ns duration that depicted the stability of the compounds and proteins. In the current study, employing dual approach in-silico and in-vitro enzyme assays has yielded a comprehensive and strong understanding of its potential therapeutic properties, making a significant step towards the development of novel anti-diabetic treatment

    Bioprocessing of Agro-Industrial Waste for Maximization of Pectinase Production by a Novel Native Strain <i>Aspergillus cervinus</i> ARS2 Using Statistical Approach

    No full text
    The demand for microbial pectinase has increased due to its vast applications in different industries. The current study dealt with the synthesis of pectinase by a novel native strain Aspergillus cervinus ARS2 using agro-industrial waste. Comparative studies conducted on pectinase production by submerged fermentation (SmF) and solid-state fermentation (SSF) showed that pectinase activity was more increased in SSF (44.51 ± 1.33 IU/mL) than in SmF (40.60 ± 1.15 IU/mL) when using orange peel as a substrate. Using SSF, one-factor-at-a-time (OFAT) studies were conducted, considering different process variables such as inoculum size, initial pH, incubation time, moisture content, incubation temperature, and substrate particle size, all of which affected the pectinase activity. OFAT results showed the highest pectinase activity at an inoculum size of 106 spores/mL (43.11 ± 1.06 U/mL), an incubation time of 6 days (43.81 ± 1.21 U/mL), a moisture content of 100% (44.30 ± 1.69 U/mL), a substrate particle size of 1.7 mm (42.06 ± 1.20 U/mL), an incubation temperature of 37 °C (45.90 ± 1.33 U/mL), and an initial pH of 4 (43.31 ± 0.89 U/mL). The identified significant process variables were then optimized by response surface methodology (RSM)-central composite design (CCD). The results showed optimum pectinase activity of 107.14 ± 0.71 IU/mL for a substrate particle size of 2 mm, an incubation temperature of 31.5 °C, an initial pH of 4.9, and a moisture content of 107%, which was obtained from the Minitab optimizer. By using statistical optimization, the pectinase production from the isolated novel fungal strain A. cervinus ARS2 was increased 2.38-fold. Therefore, the A. cervinus ARS2 strain can be further explored for large-scale pectinase production which could meet the growing industrial demands

    Media Optimization by Response Surface Methodology for the Enhanced Production of Acidic Extracellular Pectinase by the Indigenously Isolated Novel Strain Aspergillus cervinus ARS2 Using Solid-State Fermentation

    No full text
    Pectinolytic enzymes are related enzymes that hydrolyze pectic substances. Pectinolytic enzymes are of great interest in industrial applications for softening fruits, extracting and clarifying juices, extracting olive oil, retting textile fibers, preparing gel, and isolating protoplasts. The current work presents acidic extracellular pectinase production using low-cost agro-industrial waste with the indigenously isolated novel strain Aspergillus cervinus. Two fungal isolates, ARS2 and ARS8, with maximum pectinase activity, 41.88 &plusmn; 1.57 IU/mL and 39.27 &plusmn; 1.14 IU/mL, respectively, were screened out of 27 isolates from decayed fruit peels (orange, banana, and lemon) and soil containing decomposed vegetables. The isolate ARS2, identified as Aspergillus cervinus by molecular characterization, showed the highest pectinase activity of 43.05 &plusmn; 1.38IU/mL during screening and was further used for media component screening and optimization studies. To understand their effect on pectinase activity, one-factor-at-a-time (OFAT) studies were conducted on carbon sources, nitrogen sources, and mineral salts. The OFAT results showed the highest pectinase activity for orange peel (carbon source) at 44.51 &plusmn; 1.33 IU/mL, peptone (nitrogen source) at 45.05 &plusmn; 1.04 IU/mL, and NaH2PO4 (mineral salts) at 43.21 &plusmn; 1.12 IU/mL. The most significant media components screened by the Plackett&ndash;Burman (PB) design based on the p-value, Pareto chart, and main effect plot, were orange peel (p &lt; 0.001), peptone (p &lt; 0.001), NaH2PO4 (p &lt; 0.001), and KH2PO4 (p &lt; 0.001), which were further optimized using Response Surface Methodology (RSM) and Central Composite Design (CCD). The optimization results for the media components showed a maximum pectinase activity of 105.65 &plusmn; 0.31 IU/mL for 10.63 g orange peel, 3.96 g/L peptone, 2.07 g/L KH2PO4, and 2.10 g/L NaH2PO4. Thus, it was discovered that the indigenously isolated novel strain Aspergillus cervinus ARS2 was able to successfully produce a significant amount of pectinase using agro-industrial waste. Therefore, it can be considered for the large-scale optimized production of pectinase to meet industrial demands

    In Silico Study on the Interactions, Molecular Docking, Dynamics and Simulation of Potential Compounds from <i>Withania somnifera</i> (L.) Dunal Root against Cancer by Targeting KAT6A

    No full text
    Cancer is characterized by the abnormal development of cells that divide in an uncontrolled manner and further take over the body and destroy the normal cells of the body. Although several therapies are practiced, the demand and need for new therapeutic agents are ever-increasing because of issues with the safety, efficacy and efficiency of old drugs. Several plant-based therapeutics are being used for treatment, either as conjugates with existing drugs or as standalone formulations. Withania somnifera (L.) Dunal is a highly studied medicinal plant which is known to possess immunomodulatory activity as well as anticancer properties. The pivotal role of KAT6A in major cellular pathways and its oncogenic nature make it an important target in cancer treatment. Based on the literature and curated datasets, twenty-six compounds from the root of W. somnifera and a standard inhibitor were docked with the target KAT6A using Autodock vina. The compounds and the inhibitor complexes were subjected to molecular dynamics simulation (50 ns) using Desmond to understand the stability and interactions. The top compounds (based on the docking score of less than −8.5 kcal/mol) were evaluated in comparison to the inhibitor. Based on interactions at ARG655, LEU686, GLN760, ARG660, LEU689 and LYS763 amino acids with the inhibitor WM-8014, the compounds from W. somnifera were evaluated. Withanolide D, Withasomniferol C, Withanolide E, 27-Hydroxywithanone, Withanolide G, Withasomniferol B and Sitoindoside IX showed high stability with the residues of interest. The cell viability of human breast cancer MCF-7 cells was evaluated by treating them with W. Somnifera root extract using an MTT assay, which showed inhibitory activity with an IC50 value of 45 µg/mL. The data from the study support the traditional practice of W. somnifera as an anticancer herb

    In-vitro and computational analysis of Urolithin-A for anti-inflammatory activity on Cyclooxygenase 2 (COX-2)

    No full text
    Cyclooxygenase 2 (COX-2) participates in the inflammation process by converting arachidonic acid into prostaglandin G2 which increases inflammation, pain and fever. COX-2 has an active site and a heme pocket and blocking these sites stops the inflammation. Urolithin A is metabolite of ellagitannin produced from humans and animals gut microbes. In the current study, Urolithin A showed good pharmacokinetic properties. Molecular docking of the complex of Urolithin A and COX-2 revealed the ligand affinity of −7.97 kcal/mol with the ligand binding sites at TYR355, PHE518, ILE517 and GLN192 with the 4-H bonds at a distance of 2.8 Å, 2.3 Å, 2.5 Å and 1.9 Å. The RMSD plot for Urolithin A and COX-2 complex was observed to be constant throughout the duration of dynamics. A total of 3 pair of hydrogen bonds was largely observed on average of 3 simulation positions for dynamics duration of 500 ns. The MMPBSA analysis showed that active site amino acids had a binding energy of –22.0368 kJ/mol indicating that throughout the simulation the protein of target was bounded by Urolithin A. In-silico results were validated by biological assays. Urolithin A strongly revealed to exhibit anti-inflammatory effect on COX-2 with an IC50 value of 44.04 µg/mL. The anti-inflammatory capability was also depicted through reduction of protein denaturation that showed 37.6 ± 0.1 % and 43.2 ± 0.07 % reduction of protein denaturation for BSA and egg albumin respectively at 500 µg/mL. The present study, suggests Urolithin A to be an effective anti-inflammatory compound for therapeutic use

    Exploring Bioactive Phytochemicals in <i>Gymnema sylvestre</i>: Biomedical Uses and Computational Investigations

    No full text
    The main objective of this research was to perform Gymnema sylvestre (Asclepiadaceae) extract’s phytochemical screening and identify its therapeutic potential. Using a Soxhlet apparatus, the powdered plant material was extracted using ethyl acetate. The preliminary phytochemical analysis confirmed the presence of alkaloids, flavonoids, phenols, glycosides, and steroids. Gas chromatography–mass spectroscopy analysis of the extract was performed and confirmed the presence of 11 compounds. As per the quantitative analysis, the extract exhibited a phenolic content of 948 µg gallic acid equivalent/g dry weight, a total flavonoid content of 398 µg quercetin equivalent/g dry weight, and an alkaloid content of 487 µg atropine equivalent/g dry weight. As per the in vitro cytotoxicity test using A549 cells, the IC50 (half-maximal inhibitory concentration) value for the extract was found to be 76.06 ± 1.26 µg/mL, indicating its cytotoxic effect on the cells. The ethyl acetate extract showed significant antibacterial efficacy, as evidenced by a zone of clearance measuring 3 mm against Escherichia coli and 6 mm against Bacillus subtilis. For anthelmintic activity, the earthworm paralysis time induced by G. sylvestre extract (10 mg/mL) was 28.13 ± 0.8 min, and the time of death was 68.21 ± 1.72 min. In comparison, the reference drug, piperazine citrate (10 mg/mL), caused paralysis in 22.18 ± 1.02 min and resulted in death at 66.22 ± 2.35 min. Similarly, the coagulation time was notably prolonged, with blood clot formation observed at 1 min and 40 s, at a concentration of 1 mg/mL, which underscores the potential anticoagulant or hemostatic modulation properties of G. sylvestre extract. The test extract showed good inhibition of alpha-amylase activity and exhibited an IC50 value of 15.59 µg/mL. The IC50 value for DPPH (2,2-diphenyl-1-picrylhydrazyl)-scavenging activity for the extract was 19.19 µg/mL. Based on the GCMS results, the compound 2,7-dimethyl-undecane was selected for its anticancer potential. Docking studies were conducted with the epidermal growth factor receptor (EGFR) protein, specifically the 5WB7 variant associated with lung cancer. The docking score was −4.5, indicating a potential interaction. Key interaction residues such as ASN328, VAL350, and THR358 were identified. Overall, this research provides valuable insights into the phytochemical composition and diverse biological activities of G. sylvestre extract, offering a foundation for further exploration of its medicinal and pharmacological potential

    Computational Exploration of Potential Pharmacological Inhibitors Targeting the Envelope Protein of the Kyasanur Forest Disease Virus

    No full text
    The limitations of the current vaccination strategy for the Kyasanur Forest Disease virus (KFDV) underscore the critical need for effective antiviral treatments, highlighting the crucial importance of exploring novel therapeutic approaches through in silico drug design. Kyasanur Forest Disease, caused by KFDV, is a tick-borne disease with a mortality of 3–5% and an annual incidence of 400 to 500 cases. In the early stage of infection, the envelope protein plays a crucial role by facilitating host–virus interactions. The objective of this research is to develop effective antivirals targeting the envelope protein to disrupt the virus–host interaction. In line with this, the 3D structure of the envelope protein was modeled and refined through molecular modeling techniques, and subsequently, ligands were designed via de novo design and pharmacophore screening, yielding 12 potential hits followed by ADMET analysis. The top five candidates underwent geometry optimization and molecular docking. Notably, compounds L4 (SA28) and L3 (CNP0247967) are predicted to have significant binding affinities of −8.91 and −7.58 kcal/mol, respectively, toward the envelope protein, based on computational models. Both compounds demonstrated stability during 200 ns molecular dynamics simulations, and the MM-GBSA binding free-energy values were −85.26 ± 4.63 kcal/mol and −66.60 ± 2.92 kcal/mol for the envelope protein L3 and L4 complexes, respectively. Based on the computational prediction, it is suggested that both compounds have potential as drug candidates for controlling host–virus interactions by targeting the envelope protein. Further validation through in-vitro assays would complement the findings of the present in silico investigations

    In Vitro Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Mangifera indica Aqueous Leaf Extract against Multidrug-Resistant Pathogens

    No full text
    An estimated 35% of the world&rsquo;s population depends on wheat as their primary crop. One fifth of the world&rsquo;s wheat is utilized as animal feed, while more than two thirds are used for human consumption. Each year, 17&ndash;18% of the world&rsquo;s wheat is consumed by China and India. In wheat, spot blotch caused by Bipolaris sorokiniana is one of the major diseases which affects the wheat crop growth and yield in warmer and humid regions of the world. The present work was conducted to evaluate the effect of green synthesized silver nanoparticles on the biochemical constituents of wheat crops infected with spot blotch disease. Silver nanoparticles (AgNPs) were synthesized using Mangifera indica leaf extract and their characterization was performed using UV-visible spectroscopy, SEM, XRD, and PSA. Characterization techniques confirm the presence of crystalline, spherical silver nanoparticles with an average size of 52 nm. The effect of green synthesized nanoparticles on antioxidative enzymes, e.g., Superoxide dismutase (SOD), Catalase (CAT), Glutathione Reductase (GR), Peroxidase (POX), and phytochemical precursor enzyme Phenylalanine Ammonia-Lyase (PAL), and on primary and secondary metabolites, e.g., reducing sugar and total phenol, in Bipolaris sorokiniana infected wheat crop were studied. Inoculation of fungal spores was conducted after 40 days of sowing. Subsequently, diseased plants were treated with silver nanoparticles at different concentrations. Elevation in all biochemical constituents was recorded under silver nanoparticle application. The treatment with a concentration of nanoparticles at 50 pp min diseased plants showed the highest resistance towards the pathogen. The efficacy of the green synthesized AgNPs as antibacterial agents was evaluated against multi drug resistant (MDR) bacteria comprising Gram-negative bacteria Escherichia coli (n = 6) and Klebsiella pneumoniae (n = 7) and Gram-positive bacteria Methicillin resistant Staphylococcus aureus (n = 2). The results show promising antibacterial activity with significant inhibition zones observed with the disc diffusion method, thus indicating green synthesized M. indica AgNPs as an active antibacterial agent against MDR pathogens

    In Silico Molecular Docking and Simulation Studies of Protein HBx Involved in the Pathogenesis of Hepatitis B Virus-HBV

    No full text
    Current drug discovery involves finding leading drug candidates for further development. New scientific approaches include molecular docking, ADMET studies, and molecular dynamic simulation to determine targets and lead compounds. Hepatitis B is a disease of concern that is a life-threatening liver infection. The protein considered for the study was HBx. The hepatitis B X-interacting protein crystal structure was obtained from the PDB database (PDB ID-3MSH). Twenty ligands were chosen from the PubChem database for further in silico studies. The present study focused on in silico molecular docking studies using iGEMDOCK. The triethylene glycol monoethyl ether derivative showed an optimum binding affinity with the molecular target HBx, with a high negative affinity binding energy of −59.02 kcal/mol. Lipinski’s rule of five, Veber, and Ghose were followed in subsequent ADMET studies. Molecular dynamic simulation was performed to confirm the docking studies and to analyze the stability of the structure. In these respects, the triethylene glycol monoethyl ether derivative may be a promising molecule to prepare future hepatitis B drug candidates. Substantial research effort to find a promising drug for hepatitis B is warranted in the future
    corecore