4 research outputs found

    Performance optimization and light-beam-deviation analysis of the parallel-slab division-of-amplitude photopolarimeter

    Get PDF
    A division-of-amplitude photopolarimeter that uses a parallel-slab multiple-reflection beam splitter was described recently [Opt. Lett. 21, 1709 (1996)]. We provide a general analysis and an optimization of a specific design that uses a fused-silica slab that is uniformly coated with a transparent thin film of ZnS on the front surface and with an opaque Ag or Au reflecting layer on the back. Multiple internal reflections within the slab give rise to a set of parallel, equispaced, reflected beams numbered 0, 1, 2, and 3 that are intercepted by photodetectors D0, D1, D2, and D3, respectively, to produce output electrical signals i0, i1,i2, and i3, respectively. The instrument matrix A, which relates the output-signal vector I to the input Stokes vector S by I = AS, and its determinant D are analyzed. The instrument matrix A is nonsingular; hence all four Stokes parameters can be measured simultaneously over a broad spectral range (UV–VIS–IR). The optimum film thickness, the optimum angle of incidence, and the effect of light-beam deviation on the measured input Stokes parameters are considered

    Performance optimization and light-beam-deviation analysis of the parallel-slab division-of-amplitude photopolarimeter

    Get PDF
    A division-of-amplitude photopolarimeter that uses a parallel-slab multiple-reflection beam splitter was described recently [Opt. Lett. 21, 1709 (1996)]. We provide a general analysis and an optimization of a specific design that uses a fused-silica slab that is uniformly coated with a transparent thin film of ZnS on the front surface and with an opaque Ag or Au reflecting layer on the back. Multiple internal reflections within the slab give rise to a set of parallel, equispaced, reflected beams numbered 0, 1, 2, and 3 that are intercepted by photodetectors D0, D1, D2, and D3, respectively, to produce output electrical signals i0, i1,i2, and i3, respectively. The instrument matrix A, which relates the output-signal vector I to the input Stokes vector S by I = AS, and its determinant D are analyzed. The instrument matrix A is nonsingular; hence all four Stokes parameters can be measured simultaneously over a broad spectral range (UV–VIS–IR). The optimum film thickness, the optimum angle of incidence, and the effect of light-beam deviation on the measured input Stokes parameters are considered

    A multiple view polarimetric camera

    Get PDF
    A multiple view polarimetric camera is developed. The system uses four separate action cameras and software is employed to map the images onto each other in order to generate the Stokes vectors, the degree of linear polarisation and angle images. To ensure robustness, an automated calibration system has been developed that ensures the pixels are correctly mapped. Video frame synchronisation is also developed
    corecore