1,696 research outputs found
Mapping of neurokinin b in the cat brainstem
Abstract We studied the distribution of neurokinin B-immunoreactive cell bodies and fibers in the cat brainstem using an indirect immunoperoxidase technique. The highest density of immunoreactive fibers was found in the motor trigeminal nucleus, the laminar and alaminar spinal trigeminal nuclei, the facial nucleus, the marginal nucleus of the brachium conjunctivum, the locus coeruleus, the cuneiform nucleus, the dorsal motor nucleus of the vagus, the postpyramidal nucleus of the raphe, the lateral tegmental field, the Ko¨lliker-Fuse nucleus, the inferior central nucleus, the periaqueductal gray, the nucleus of the solitary tract, and in the inferior vestibular nucleus. Immunoreactive cell bodies containing neurokinin B were observed, for example, in the locus coeruleus, the dorsal motor nucleus of the vagus, the median division of the dorsal nucleus of the raphe, the lateral tegmental field, the pericentral nucleus of the inferior colliculus, the internal division of the lateral reticular nucleus, the inferior central nucleus, the periaqueductal gray, the postpyramidal nucleus of the raphe, and in the medial nucleus of the solitary tract. This widespread distribution of neurokinin B in the cat brainstem suggests that the neuropeptide could be involved in many different physiological functions. In comparison with previous studies carried out in the rat brainstem on the distribution of neurokinin B, our results point to a more widespread distribution of this neuropeptide in the cat brainstem. Keywords Neurokinin B AE Brainstem AE Cat AE Immunocytochemistry AE Mapping AE Tachykini
Very special relativity as relativity of dark matter: the Elko connection
In the very special relativity (VSR) proposal by Cohen and Glashow, it was
pointed out that invariance under HOM(2) is both necessary and sufficient to
explain the null result of the Michelson-Morely experiment. It is the quantum
field theoretic demand of locality, or the requirement of P, T, CP, or CT
invariance, that makes invariance under the Lorentz group a necessity.
Originally it was conjectured that VSR operates at the Planck scale; we propose
that the natural arena for VSR is at energies similar to the standard model,
but in the dark sector. To this end we provide an ab initio spinor
representation invariant under the SIM(2) avatar of VSR and construct a mass
dimension one fermionic quantum field of spin one half. This field turns out to
be a very close sibling of Elko and it exhibits the same striking property of
intrinsic darkness with respect to the standard model fields. In the new
construct, the tension between Elko and Lorentz symmetries is fully resolved.
We thus entertain the possibility that the symmetries underlying the standard
model matter and gauge fields are those of Lorentz, while the event space
underlying the dark matter and the dark gauge fields supports the algebraic
structure underlying VSR.Comment: 19 pages. Section 5 is new. Published version (modulo a footnote, and
a corrected typo
Massive Spin-2 States as the Origin of the Top Quark Forward-Backward Asymmetry
We show that the anomalously large top quark forward-backward asymmetry
observed by CDF and D\O\, can naturally be accommodated in models with
flavor-violating couplings of a new massive spin-2 state to quarks. Regardless
of its origin, the lowest-order couplings of a spin-2 boson to fermions are
analogous to the coupling of the graviton to energy/momentum, leading to strong
sensitivity of the effects associated with its virtual exchange to the energy
scales at hand. Precisely due to this fact, the observed dependence of the
asymmetry on the invariant mass fits nicely into the proposed
framework. In particular, we find a vast parameter space which can lead to the
central value for the observed forward-backward asymmetry in the high mass bin,
while being in accord with all of the existing experimental constraints.Comment: added discussion of differential observables at the LHC, matches
version accepted for publication in JHE
cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.
Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites
Top quark forward-backward asymmetry in R-parity violating supersymmetry
The interaction of bottom squark-mediated top quark pair production,
occurring in the R-parity violating minimal supersymmetric standard model
(MSSM), is proposed as an explanation of the anomalously large
forward-backward asymmetry (FBA) observed at the Tevatron. We find that this
model can give a good fit to top quark data, both the inclusive and invariant
mass-dependent asymmetries, while remaining consistent (at the 2-
level) with the total and differential production cross-sections. The scenario
is challenged by strong constraints from atomic parity violation (APV), but we
point out an extra diagram for the effective down quark-Z vertex, involving the
same coupling constant as required for the FBA, which tends to weaken the APV
constraint, and which can nullify it for reasonable values of the top squark
masses and mixing angle. Large contributions to flavor-changing neutral
currents can be avoided if only the third generation of sparticles is light.Comment: 24 pages, 7 figures. v3: included LHC top production cross section
data; model still consistent at 2 sigma leve
Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj
We present U(1) flavor models for leptophobic Z' with flavor dependent
couplings to the right-handed up-type quarks in the Standard Model, which can
accommodate the recent data on the top forward-backward (FB) asymmetry and the
dijet resonance associated with a W boson reported by CDF Collaboration. Such
flavor-dependent leptophobic charge assignments generally require extra chiral
fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor
symmetry calls for new U(1)'-charged Higgs doublets in order for the SM
fermions to have realistic renormalizable Yukawa couplings. The stringent
constraints from the top FB asymmetry at the Tevatron and the same sign top
pair production at the LHC can be evaded due to contributions of the extra
Higgs doublets. We also show that the extension could realize cold dark matter
candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion,
accepted for publication in JHE
The REstart or STop Antithrombotics Randomised Trial (RESTART) after stroke due to intracerebral haemorrhage: study protocol for a randomised controlled trial
Background
For adults surviving stroke due to spontaneous (non-traumatic) intracerebral haemorrhage (ICH) who had taken an antithrombotic (i.e. anticoagulant or antiplatelet) drug for the prevention of vaso-occlusive disease before the ICH, it is unclear whether starting antiplatelet drugs results in an increase in the risk of recurrent ICH or a beneficial net reduction of all serious vascular events compared to avoiding antiplatelet drugs.
Methods/design
The REstart or STop Antithrombotics Randomised Trial (RESTART) is an investigator-led, randomised, open, assessor-blind, parallel-group, randomised trial comparing starting versus avoiding antiplatelet drugs for adults surviving antithrombotic-associated ICH at 122 hospital sites in the United Kingdom. RESTART uses a central, web-based randomisation system using a minimisation algorithm, with 1:1 treatment allocation to which central research staff are masked. Central follow-up includes annual postal or telephone questionnaires to participants and their general (family) practitioners, with local provision of information about adverse events and outcome events. The primary outcome is recurrent symptomatic ICH. The secondary outcomes are: symptomatic haemorrhagic events; symptomatic vaso-occlusive events; symptomatic stroke of uncertain type; other fatal events; modified Rankin Scale score; adherence to antiplatelet drug(s). The magnetic resonance imaging (MRI) sub-study involves the conduct of brain MRI according to a standardised imaging protocol before randomisation to investigate heterogeneity of treatment effect according to the presence of brain microbleeds. Recruitment began on 22 May 2013. The target sample size is at least 720 participants in the main trial (at least 550 in the MRI sub-study).
Discussion
Final results of RESTART will be analysed and disseminated in 2019.
Trial registration
ISRCTN71907627 (www.isrctn.com/ISRCTN71907627). Prospectively registered on 25 April 2013
Update of variants identified in the pancreatic β-cell K ATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes
The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.This article is freely available via Open Access. Click on the publisher URL to access it via the publisher's site.P30 DK020595/NH/NIH HHS/United States
K23 DK094866/NH/NIH HHS/United States
R03 DK103096/NH/NIH HHS/United States
1-11-CT-41/American Diabetes Association/International
R01 DK104942/DK/NIDDK NIH HHS/United States
WT_/Wellcome Trust/United Kingdom
WT098395/Z/12/Z/WT_/Wellcome Trust/United Kingdom
UL1 TR000430/NH/NIH HHS/United States
P30 DK020595/DK/NIDDK NIH HHS/United States
UL1 TR000430/TR/NCATS NIH HHS/United States
1-17-JDF-008/American Diabetes Association/International
105636/Z/14/Z/WT_/Wellcome Trust/United Kingdom
110675/European Association for the Study of Diabetes-Novo Nordisk/International
16/0005407/DUK_/Diabetes UK/United Kingdom
R01 DK104942/NH/NIH HHS/United States
R03 DK103096/DK/NIDDK NIH HHS/United States
K23 DK094866/DK/NIDDK NIH HHS/United Statespublished version, accepted version (12 month embargo), submitted versio
Fertilization with beneficial microorganisms decreases tomato defenses against insect pests
International audienceThe adverse effects of chemical fertilizers on agricultural fields and the environment are compelling society to move toward more sustainable farming techniques. “Effective microorganisms” is a beneficial microbial mixture that has been developed to improve soil quality and crop yield while simultaneously dramatically reducing organic chemical application. Additional indirect benefits of beneficial microorganisms application may include increased plant resistance to herbivore attack, though this has never been tested till now. Tomato plants were grown in controlled greenhouse conditions in a full-factorial design with beneficial microorganisms inoculation and commercial chemical fertilizer application as main factors. We measured plant yield and growth parameters, as well as resistance against the generalist pest Spodoptera littoralis moth larval attack. Additionally, we measured plant defensive chemistry to underpin resistance mechanisms. Overall, we found that, comparable to chemical fertilizer, beneficial microorganisms increased plant growth fruit production by 35 and 61 %, respectively. Contrary to expectations, plants inoculated with beneficial microorganisms sustained 25 % higher insect survival and larvae were in average 41 % heavier than on unfertilized plants. We explain these results by showing that beneficial microorganism-inoculated plants were impaired in the induction of the toxic glycoalkaloid molecule tomatine and the defense-related phytohormone jasmonic acid after herbivore attack. For the first time, we therefore show that biofertilizer application might endure unintended, pest-mediated negative effects, and we thus suggest that biofertilizer companies should incorporate protection attributes in their studies prior to commercialization
Compressed representation of a partially defined integer function over multiple arguments
In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
- …