170 research outputs found

    An improved \eps expansion for three-dimensional turbulence: two-loop renormalization near two dimensions

    Full text link
    An improved \eps expansion in the dd-dimensional (d>2d > 2) stochastic theory of turbulence is constructed at two-loop order which incorporates the effect of pole singularities at d2d \to 2 in coefficients of the \eps expansion of universal quantities. For a proper account of the effect of these singularities two different approaches to the renormalization of the powerlike correlation function of the random force are analyzed near two dimensions. By direct calculation it is shown that the approach based on the mere renormalization of the nonlocal correlation function leads to contradictions at two-loop order. On the other hand, a two-loop calculation in the renormalization scheme with the addition to the force correlation function of a local term to be renormalized instead of the nonlocal one yields consistent results in accordance with the UV renormalization theory. The latter renormalization prescription is used for the two-loop renormalization-group analysis amended with partial resummation of the pole singularities near two dimensions leading to a significant improvement of the agreement with experimental results for the Kolmogorov constant.Comment: 23 pages, 2 figure

    Anomalous scaling of a passive scalar advected by the Navier--Stokes velocity field: Two-loop approximation

    Full text link
    The field theoretic renormalization group and operator product expansion are applied to the model of a passive scalar quantity advected by a non-Gaussian velocity field with finite correlation time. The velocity is governed by the Navier--Stokes equation, subject to an external random stirring force with the correlation function δ(tt)k4d2ϵ\propto \delta(t-t') k^{4-d-2\epsilon}. It is shown that the scalar field is intermittent already for small ϵ\epsilon, its structure functions display anomalous scaling behavior, and the corresponding exponents can be systematically calculated as series in ϵ\epsilon. The practical calculation is accomplished to order ϵ2\epsilon^{2} (two-loop approximation), including anisotropic sectors. Like for the well-known Kraichnan's rapid-change model, the anomalous scaling results from the existence in the model of composite fields (operators) with negative scaling dimensions, identified with the anomalous exponents. Thus the mechanism of the origin of anomalous scaling appears similar for the Gaussian model with zero correlation time and non-Gaussian model with finite correlation time. It should be emphasized that, in contrast to Gaussian velocity ensembles with finite correlation time, the model and the perturbation theory discussed here are manifestly Galilean covariant. The relevance of these results for the real passive advection, comparison with the Gaussian models and experiments are briefly discussed.Comment: 25 pages, 1 figur

    Anomalous scaling, nonlocality and anisotropy in a model of the passively advected vector field

    Full text link
    A model of the passive vector quantity advected by a Gaussian time-decorrelated self-similar velocity field is studied; the effects of pressure and large-scale anisotropy are discussed. The inertial-range behavior of the pair correlation function is described by an infinite family of scaling exponents, which satisfy exact transcendental equations derived explicitly in d dimensions. The exponents are organized in a hierarchical order according to their degree of anisotropy, with the spectrum unbounded from above and the leading exponent coming from the isotropic sector. For the higher-order structure functions, the anomalous scaling behavior is a consequence of the existence in the corresponding operator product expansions of ``dangerous'' composite operators, whose negative critical dimensions determine the exponents. A close formal resemblance of the model with the stirred NS equation reveals itself in the mixing of operators. Using the RG, the anomalous exponents are calculated in the one-loop approximation for the even structure functions up to the twelfth order.Comment: 37 pages, 4 figures, REVTe

    An improved \eps expansion for three-dimensional turbulence: summation of nearest dimensional singularities

    Full text link
    An improved \eps expansion in the dd-dimensional (d>2d > 2) stochastic theory of turbulence is constructed by taking into account pole singularities at d2d \to 2 in coefficients of the \eps expansion of universal quantities. Effectiveness of the method is illustrated by a two-loop calculation of the Kolmogorov constant in three dimensions.Comment: 4 page

    Two-Loop Calculation of the Anomalous Exponents in the Kazantsev--Kraichnan Model of Magnetic Hydrodynamics

    Full text link
    The problem of anomalous scaling in magnetohydrodynamics turbulence is considered within the framework of the kinematic approximation, in the presence of a large-scale background magnetic field. Field theoretic renormalization group methods are applied to the Kazantsev-Kraichnan model of a passive vector advected by the Gaussian velocity field with zero mean and correlation function δ(tt)/kd+ϵ\propto \delta(t-t')/k^{d+\epsilon}. Inertial-range anomalous scaling for the tensor pair correlators is established as a consequence of the existence in the corresponding operator product expansions of certain "dangerous" composite operators, whose negative critical dimensions determine the anomalous exponents. The main technical result is the calculation of the anomalous exponents in the order ϵ2\epsilon^2 of the ϵ\epsilon expansion (two-loop approximation).Comment: Presented in the Conference "Mathematical Modeling and Computational Physics" (Stara Lesna, Slovakia, July 2011

    Pressure and intermittency in passive vector turbulence

    Full text link
    We investigate the scaling properties a model of passive vector turbulence with pressure and in the presence of a large-scale anisotropy. The leading scaling exponents of the structure functions are proven to be anomalous. The anisotropic exponents are organized in hierarchical families growing without bound with the degree of anisotropy. Nonlocality produces poles in the inertial-range dynamics corresponding to the dimensional scaling solution. The increase with the P\'{e}clet number of hyperskewness and higher odd-dimensional ratios signals the persistence of anisotropy effects also in the inertial range.Comment: 4 pages, 1 figur

    Calculation of the anomalous exponents in the rapid-change model of passive scalar advection to order ε3\varepsilon^{3}

    Full text link
    The field theoretic renormalization group and operator product expansion are applied to the model of a passive scalar advected by the Gaussian velocity field with zero mean and correlation function \propto\delta(t-t')/k^{d+\eps}. Inertial-range anomalous exponents, identified with the critical dimensions of various scalar and tensor composite operators constructed of the scalar gradients, are calculated within the ε\varepsilon expansion to order ε3\varepsilon^{3} (three-loop approximation), including the exponents in anisotropic sectors. The main goal of the paper is to give the complete derivation of this third-order result, and to present and explain in detail the corresponding calculational techniques. The character and convergence properties of the ε\varepsilon expansion are discussed; the improved ``inverse'' ε\varepsilon expansion is proposed and the comparison with the existing nonperturbative results is given.Comment: 34 pages, 5 figures, REVTe
    corecore