26 research outputs found

    Ammonia Emission, Manure Nutrients and Egg Production of Laying Hens Fed Distiller Dried Grain Diets

    Get PDF
    A USDA Natural Resources Conservation Service, Conservation Innovation Grant project coordinated by the United Egg Producers (UEP) conducted concurrent demonstrations in Iowa and Pennsylvania (PA) at commercial laying hen facilities. The goal was to document manure nutrient and gas emission improvements through the use of dried distiller’s grain with solubles (DDGS) diets and/or other dietary modifications while maintaining or improving hen productivity. Results of the PA trial are presented here. Diets containing 10% corn DDGS with (D+P) or without (D) the probiotic Provalen™ were compared to a corn-soybean based control diet (CON). The isocaloric, amino acid balanced diets were fed to three groups of 39,800 Lohmann hens in one house. Hens were 20-65 wk of age with each diet provided to 2 of 6 rows of stacked cages with manure belts (six decks high). Feed intake, water consumption, hen body weight (BW), egg production (EP,) egg case weight, mortality, feed cost (FC), and egg income (EI) were provided weekly by the cooperating egg company. Replicated monthly data, including egg weight (EW), albumen height (AH), Haugh units (HU), yolk color (YC), shell strength (SS) and shell thickness (ST), were determined from eggs collected from six 4-cage sections of hens on each diet. Replicated monthly samples of hen manure (fresh and from storage) were analyzed for moisture and major nutrients. Ammonia (NH3) gas measurements utilized a non-steady state flux chamber method coupled with photoacoustic infrared gas analyzer. There was no clear trend in the magnitude of NH3 emissions relative to the diets within the hen house as measured on the manure belt. At 32 and 36 wks of age, NH3 emissions were significantly (P \u3c 0.10) higher in D while D+P and CON were lower and similar. At 48 and 52 wks, NH3 emissions from D were similar to D+P and significantly lower than CON. Emission rate from belt manure averaged 0.42 ±0.025 g bird-1 d-1 for all treatments and dates. There was no significant impact of diet on BW, EW, HU, SS, or ST (P =0.10 to 0.66), however, CON hens had lower EP, AH, and YC compared to D and D+P hens (P=0.05). Fresh manure total phosphorus (P2O5) was higher for CON samples (P \u3c 0.05) while other major agronomic nutrients and moisture were not significantly different among treatments. Stored CON manure samples had increased moisture and NH4-N compared to those of D and D+P treatments (P \u3c 0.10). Weekly EI minus FC averaged 6,146,6,146, 6,215, and $6,209 for the CON, D, and D+P diets, respectively

    Evaluation of odor emissions from amended dairy manure: preliminary screening

    Get PDF
    Manure amendments have shown variable effectiveness in reducing odor.  Twenty-two amendments were applied to dairy manure then evaluated for odor reduction efficacy after storage at 20℃ for 3 d and 30 d.  Amendments represented differing primary modes of action including: microbial digestive, oxidizing, disinfecting, masking, and adsorbent.  Each amendment was added to 2 kg dairy manure (1:1.7 urine:feces; 12% total solids) following recommended rates.  In this preliminary screening, one sample (n=1) of each amendment was evaluated along with untreated manure (Control).  Odor emission from each treated manure and Control was estimated twice by five or six qualified odor assessors (n=10 or 12) after each storage duration, using an international standard for triangular forced-choice olfactometry.  Odor quality was defined using hedonic tone, Labeled Magnitude Scale and ASTM methods for supra-threshold odor intensity, and an odor character wheel for descriptors.  For selected treatments, odor emissions were significantly reduced relative to Control at 30 d versus 3 d incubation (P<0.0001).  However, no amendment was significantly effective for both incubation times.  Likewise, for all amendments tested, aging the manure slurry for 30 d significantly reduced odor emission and odor intensity (P<0.0001).  A proprietary microbial amendment (Alken Enz-Odor + Clear Flo: aerobic/ facultative microbes with growth factors), disinfectant (hydrogen peroxide), and masking agent (Hyssopus officinalis essential oil) provided significant short-term control of odor (P <0.06).  However, after 30 d seven amendments significantly increased odor emission (P<0.02) while only two amendments offered a significant efficacy (P<0.0001): a proprietary microbial aerobic/facultative product (Bio-Regen) and a proprietary mix of chemicals (Greaseater), both with weekly re-application.  Hedonic tone observations suggested an improvement to “slightly to moderately unpleasant” smell versus untreated manure for all amendments except clinoptilolite zeolite adsorbent.  Hedonic tone improvement was correlated with reduced manure odor supra-threshold intensity.Keywords: odor, hedonic tone, odor strength, amendments, additives, dairy manure, United States of Americ

    Manure amendments for mitigation of dairy ammonia and greenhouse gas emissions: preliminary screening

    Get PDF
     Amendments can be practical and cost-effective for reducing ammonia [NH3] and greenhouse gas [GHG] emissions from dairy manure.  In this study, the effect of 22 amendments on NH3 and GHG carbon dioxide [CO2], methane [CH4] and nitrous oxide [N2O] emissions from dairy manure were simultaneous investigated at room temperature (20℃).  Dairy manure slurry (2 kg; 1:1.7 urine: feces; 12% total solids) was treated with various amendments, representing different classes of product, following the suppliers’ recommended rates.  In this screening of products, one sample of each amendment was evaluated along with untreated manure slurry with repeated measurements over 24 h.  Gas emissions were measured after short (3 d) and medium (30 d) storage duration using a photoacoustic multi-gas analyzer.  Six amendment products that acted as microbial digest, oxidizing agent, masking agent or adsorbent significantly reduced NH3 by >10% (P = 0.04 to <0.001) after both 3 and 30 d.  Microbial digest/enzymes with nitrogen substrate appeared effective in reducing CH4 fluxes for both storage times.  Most of the masking agents and disinfectants significantly increased CH4 in both storage periods (P = 0.04 to <0.001).  For both CH4 and CO2 fluxes, aging the manure slurry for 30 d significantly reduced gas production by 11 to 100% (P<0.001).  While some products reduced emissions at one or both storage times, results showed that the ability of amendments to mitigate emissions from dairy manure is finite and re-application may be required even for a static amount of manure.  Simultaneous measurement of gases identified glycerol as a successful NH3 reduction agent while increasing CH4 in contrast to a digestive-microbial product that significantly reduced CH4 while enhancing NH3 release.Keywords: methane, greenhouse gas, emission, amendment, additive, dairy manure, ammonia, mitigatio

    Assessing Seasonal Methane and Nitrous Oxide Emissions from Furrow-Irrigated Rice with Cover Crops

    No full text
    Improved irrigation management is identified as a potential mitigation option for methane (CH4) emissions from rice (Oryza sativa). Furrow-irrigated rice (FR), an alternative method to grow rice, is increasingly adopted in the Mid-South U.S. However, FR may provide a potential risk to yield performance and higher emissions of nitrous oxide (N2O). This study quantified the grain yields, CH4 and N2O emissions from three different water management practices in rice: multiple-inlet rice irrigation (MIRI), FR, and FR with cereal rye (Secale cereale) and barley (Hordeum vulgare) as preceding winter cover crops (FRCC). CH4 and N2O fluxes were measured from May to September 2019 using a static chamber technique. Grain yield from FR (11.8 Mg ha−1) and MIRI (12.0 Mg ha−1) was similar, and significantly higher than FRCC (8.5 Mg ha−1). FR and FRCC drastically reduced CH4 emissions compared to MIRI. Total seasonal CH4 emissions decreased in the order of 44 > 11 > 3 kg CH4-C ha−1 from MIRI, FR, and FRCC, respectively. Cumulative seasonal N2O emissions were low from MIRI (0.1 kg N2O-N ha−1) but significantly higher from FR (4.4 kg N2O-N ha−1) and FRCC (3.0 kg N2O-N ha−1). However, there was no net difference in global warming potential among FR, FRCC and MIRI. These results suggest that the increased N2O flux from furrow-irrigated rice may not greatly detract from the potential benefits that furrow-irrigation offers rice producers

    Ammonia Emission, Manure Nutrients and Egg Production of Laying Hens Fed Distiller Dried Grain Diets

    Get PDF
    A USDA Natural Resources Conservation Service, Conservation Innovation Grant project coordinated by the United Egg Producers (UEP) conducted concurrent demonstrations in Iowa and Pennsylvania (PA) at commercial laying hen facilities. The goal was to document manure nutrient and gas emission improvements through the use of dried distiller’s grain with solubles (DDGS) diets and/or other dietary modifications while maintaining or improving hen productivity. Results of the PA trial are presented here. Diets containing 10% corn DDGS with (D+P) or without (D) the probiotic Provalen™ were compared to a corn-soybean based control diet (CON). The isocaloric, amino acid balanced diets were fed to three groups of 39,800 Lohmann hens in one house. Hens were 20-65 wk of age with each diet provided to 2 of 6 rows of stacked cages with manure belts (six decks high). Feed intake, water consumption, hen body weight (BW), egg production (EP,) egg case weight, mortality, feed cost (FC), and egg income (EI) were provided weekly by the cooperating egg company. Replicated monthly data, including egg weight (EW), albumen height (AH), Haugh units (HU), yolk color (YC), shell strength (SS) and shell thickness (ST), were determined from eggs collected from six 4-cage sections of hens on each diet. Replicated monthly samples of hen manure (fresh and from storage) were analyzed for moisture and major nutrients. Ammonia (NH3) gas measurements utilized a non-steady state flux chamber method coupled with photoacoustic infrared gas analyzer. There was no clear trend in the magnitude of NH3 emissions relative to the diets within the hen house as measured on the manure belt. At 32 and 36 wks of age, NH3 emissions were significantly (P This proceeding is from International Symposium on Air Quality and Manure Management for Agriculture Conference Proceedings, 13-16 September 2010, Dallas, Texas. Paper No. 711P0510cd.</p

    Greenhouse Gas Emissions and Management Practices that Affect Emissions in US Rice Systems

    No full text
    Previous reviews have quantified factors affecting greenhouse gas (GHG) emissions from Asian rice (Oryza sativa L.) systems, but not from rice systems typical for the United States, which often vary considerably particularly in practices (i.e., water and carbon management) that affect emissions. Using meta‐analytic and regression approaches, existing data from the United States were examined to quantify GHG emissions and major practices affecting emissions. Due to different production practices, major rice production regions were defined as the mid‐South (Arkansas, Texas, Louisiana, Mississippi, and Missouri) and California, with emissions being evaluated separately. Average growing season CH4 emissions for the mid‐South and California were 194 (95% confidence interval [CI] = 129–260) and 218 kg CH4 ha−1 season−1 (95% CI = 153–284), respectively. Growing season N2O emissions were similar between regions (0.14 kg N2O ha−1 season−1). Ratoon cropping (allowing an additional harvestable crop to grow from stubble after the initial harvest), common along the Gulf Coast of the mid‐South, had average CH4 emissions of 540 kg CH4 ha−1 season−1 (95% CI = 465–614). Water and residue management practices such as alternate wetting and drying, and stand establishment method (water vs. dry seeding), and the amount of residue from the previous crop had the largest effect on growing season CH4 emissions. However, soil texture, sulfate additions, and cultivar selection also affected growing season CH4 emissions. This analysis can be used for the development of tools to estimate and mitigate GHG emissions from US rice systems and other similarly mechanized systems in temperate regions
    corecore