2 research outputs found

    A numerical framework for solving PDE-constrained optimization problems from multiscale particle dynamics

    Get PDF
    In this thesis, we develop accurate and efficient numerical methods for solving partial differential equation (PDE) constrained optimization problems arising from multiscale particle dynamics, with the aim of producing a desired time-dependent state at the minimal cost. A PDE-constrained optimization problem seeks to move one or more state variables towards a desired state under the influence of one or more control variables, and a set of constraints that are described by PDEs governing the behaviour of the variables. In particular, we consider problems constrained by one-dimensional and two-dimensional advection-diffusion problems with a non-local integral term, such as the associated mean-field limit Fokker-Planck equation of the noisy Hegselmann-Krause opinion dynamics model. We include additional bound constraints on the control variable for the opinion dynamics problem. Lastly, we consider constraints described by a two-dimensional robot swarming model made up of a system of advection-diffusion equations with additional linear and integral terms. We derive continuous Lagrangian first-order optimality conditions for these problems and solve the resulting systems numerically for the optimized state and control variables. Each of these problems, combined with Dirichlet, no-flux, or periodic boundary conditions, present unique challenges that require versatility of the numerical methods devised. Our numerical framework is based on a novel combination of four main components: (i) a discretization scheme, in both space and time, with the choice of pseudospectral or fi nite difference methods; (ii) a forward problem solver that is implemented via a differential-algebraic equation solver; (iii) an optimization problem solver that is a choice between a fi xed-point solver, with or without Armijo-Wolfe line search conditions, a Newton-Krylov algorithm, or a multiple shooting scheme, and; (iv) a primal-dual active set strategy to tackle additional bound constraints on the control variable. Pseudospectral methods efficiently produce highly accurate solutions by exploiting smoothness in the solutions, and are designed to perform very well with dense, small matrix systems. For a number of problems, we take advantage of the exponential convergence of pseudospectral methods by discretising in this way not only in space, but also in time. The alternative fi nite difference method performs comparatively well when non-smooth bound constraints are added to the optimization problem. A differential{algebraic equation solver works out the discretized PDE on the interior of the domain, and applies the boundary conditions as algebraic equations. This ensures generalizability of the numerical method, as one does not need to explicitly adapt the numerical method for different boundary conditions, only to specify different algebraic constraints that correspond to the boundary conditions. A general fixed-point or sweeping method solves the system of equations iteratively, and does not require the analytic computation of the Jacobian. We improve the computational speed of the fi xed-point solver by including an adaptive Armijo-Wolfe type line search algorithm for fixed-point problems. This combination is applicable to problems with additional bound constraints as well as to other systems for which the regularity of the solution is not sufficient to be exploited by the spectral-in-space-and-time nature of the Newton-Krylov approach. The recently devised Newton-Krylov scheme is a higher-order, more efficient optimization solver which efficiently describes the PDEs and the associated Jacobian on the discrete level, as well as solving the resulting Newton system efficiently via a bespoke preconditioner. However, it requires the computation of the Jacobian, and could potentially be more challenging to adapt to more general problems. Multiple shooting solves an initial-value problem on sections of the time interval and imposes matching conditions to form a solution on the whole interval. The primal-dual active set strategy is used for solving our non-linear and non-local optimization problems obtained from opinion dynamics problems, with pointwise non-equality constraints. This thesis provides a numerical framework that is versatile and generalizable for solving complex PDE-constrained optimization problems from multiscale particle dynamic
    corecore