7 research outputs found

    Phloroglucinol Derivatives in Plant-Beneficial Pseudomonas spp.: Biosynthesis, Regulation, and Functions

    No full text
    Plant-beneficial Pseudomonas spp. aggressively colonize the rhizosphere and produce numerous secondary metabolites, such as 2,4-diacetylphloroglucinol (DAPG). DAPG is a phloroglucinol derivative that contributes to disease suppression, thanks to its broad-spectrum antimicrobial activity. A famous example of this biocontrol activity has been previously described in the context of wheat monoculture where a decline in take-all disease (caused by the ascomycete Gaeumannomyces tritici) has been shown to be associated with rhizosphere colonization by DAPG-producing Pseudomonas spp. In this review, we discuss the biosynthesis and regulation of phloroglucinol derivatives in the genus Pseudomonas, as well as investigate the role played by DAPG-producing Pseudomonas spp. in natural soil suppressiveness. We also tackle the mode of action of phloroglucinol derivatives, which can act as antibiotics, signalling molecules and, in some cases, even as pathogenicity factors. Finally, we discuss the genetic and genomic diversity of DAPG-producing Pseudomonas spp. as well as its importance for improving the biocontrol of plant pathogens

    Bridging the Gap: Type III Secretion Systems in Plant-Beneficial Bacteria

    No full text
    Type III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines translocating effector proteins into the cytoplasm of eukaryotic cells. They have been intensively studied for their important roles in animal and plant bacterial diseases. Over the past two decades, genome sequencing has unveiled their ubiquitous distribution in many taxa of Gram-negative bacteria, including plant-beneficial ones. Here, we discuss the distribution and functions of the T3SS in two agronomically important bacterial groups: the symbiotic nodule-forming nitrogen-fixing rhizobia and the free-living plant-beneficial Pseudomonas spp. In legume-rhizobia symbiosis, T3SSs and their cognate effectors play important roles, including the modulation of the plant immune response and the initiation of the nodulation process in some cases. In plant-beneficial Pseudomonas spp., the roles of T3SSs are not fully understood, but pertain to plant immunity suppression, biocontrol against eukaryotic plant pathogens, mycorrhization facilitation, and possibly resistance against protist predation. The diversity of T3SSs in plant-beneficial bacteria points to their important roles in multifarious interkingdom interactions in the rhizosphere. We argue that the gap in research on T3SSs in plant-beneficial bacteria must be bridged to better understand bacteria/eukaryotes rhizosphere interactions and to support the development of efficient plant-growth promoting microbial inoculants

    In Tuber Biocontrol of Potato Late Blight by a Collection of Phenazine-1-Carboxylic Acid-Producing <i>Pseudomonas</i> spp.

    No full text
    Phenazine-1-carboxylic acid (PCA) produced by plant-beneficial Pseudomonas spp. is an antibiotic with antagonistic activities against Phytophthora infestans, the causal agent of potato late blight. In this study, a collection of 23 different PCA-producing Pseudomonas spp. was confronted with P. infestans in potato tuber bioassays to further understand the interaction existing between biocontrol activity and PCA production. Overall, the 23 strains exhibited different levels of biocontrol activity. In general, P. orientalis and P. yamanorum strains showed strong disease reduction, while P. synxantha strains could not effectively inhibit the pathogen’s growth. No correlation was found between the quantities of PCA produced and biocontrol activity, suggesting that PCA cannot alone explain P. infestans’ growth inhibition by phenazine-producing pseudomonads. Other genetic determinants potentially involved in the biocontrol of P. infestans were identified through genome mining in strains displaying strong biocontrol activity, including siderophores, cyclic lipopeptides and non-ribosomal peptide synthase and polyketide synthase hybrid clusters. This study represents a step forward towards better understanding the biocontrol mechanisms of phenazine-producing Pseudomonas spp. against potato late blight

    Identification and genomic characterization of Pseudomonas spp. displaying biocontrol activity against Sclerotinia sclerotiorum in lettuce

    No full text
    Lettuce is an economically major leafy vegetable that is affected by numerous diseases. One of the most devastating diseases of lettuce is white mold caused by Sclerotinia sclerotiorum. Control methods for this fungus are limited due to the development of genetic resistance to commonly used fungicides, the large number of hosts and the long-term survival of sclerotia in soil. To elaborate a new and more sustainable approach to contain this pathogen, 1,210 Pseudomonas strains previously isolated from agricultural soils in Canada were screened for their antagonistic activity against S. sclerotiorum. Nine Pseudomonas strains showed strong in vitro inhibition in dual-culture confrontational assays. Whole genome sequencing of these strains revealed their affiliation with four phylogenomic subgroups within the Pseudomonas fluorescens group, namely Pseudomonas corrugata, Pseudomonas asplenii, Pseudomonas mandelii, and Pseudomonas protegens. The antagonistic strains harbor several genes and gene clusters involved in the production of secondary metabolites, including mycin-type and peptin-type lipopeptides, and antibiotics such as brabantamide, which may be involved in the inhibitory activity observed against S. sclerotiorum. Three strains also demonstrated significant in planta biocontrol abilities against the pathogen when either inoculated on lettuce leaves or in the growing substrate of lettuce plants grown in pots. They however did not impact S. sclerotiorum populations in the rhizosphere, suggesting that they protect lettuce plants by altering the fitness and the virulence of the pathogen rather than by directly impeding its growth. These results mark a step forward in the development of biocontrol products against S. sclerotiorum

    Coupling evolutionary dynamics of Venturia inaequalis effectors and functional genomic to decipher mechanisms of virulence and to identify durable resistance genes in apple.

    No full text
    During infection, pathogens secrete small secreted proteins (SSPs), called effectors, that promote disease. Plant receptors encoded by resistance R genes might recognize such effectors (also called avirulence factors AVRs), resulting in plant immunity. Pathogens evade recognition thanks to the emergence of virulent alleles present in populations. It has been demonstrated that avirulent effectors are crucial for the pathogen infection cycle and that their loss-of-function may induce a substantial fitness cost. This kind of effector is expected to be under purifying selective pressure. Here, we aim at identifying the effector repertoire of Venturia inaequalis, the agent of apple scab, assessing its evolutionary dynamics and studying the role of candidate effectors in virulence. We sequenced de novo 90 strains, collected on apple and on their wild relatives and differing in their host range or virulence to study allelic polymorphism at 880 putative effector loci. The top-20 hits for highly conserved sequences were selected as candidates for further functional analyses. In planta gene expression showed a significant induction of these conserved SSP at the early stage of plant infection. Their functions were investigated using targeted deletion mutants. Remarkably, loss of two conserved SSPs resulted in reduced aggressiveness without any alteration in growth in vitro. GFP-tagged protein and heterologous expression were used to assess their sub-cellular localization in infected apple leaves. Involvement of theses SSP in the modulation of host defence was also investigated using an apple full-transcript microarray. Highly conserved effectors will be used to screen for novel R genes in Malus genotypes characterized for their high resistance to scab. This combined knowledge should enable us to understand strategies used by the pathogen to overcome defences in apple and consequently to build more durable resistance towards apple scab

    Coupling evolutionary dynamics of Venturia inaequalis effectors and functional genomic to decipher mechanisms of virulence and to identify durable resistance genes in apple.

    No full text
    During infection, pathogens secrete small secreted proteins (SSPs), called effectors, that promote disease. Plant receptors encoded by resistance R genes might recognize such effectors (also called avirulence factors AVRs), resulting in plant immunity. Pathogens evade recognition thanks to the emergence of virulent alleles present in populations. It has been demonstrated that avirulent effectors are crucial for the pathogen infection cycle and that their loss-of-function may induce a substantial fitness cost. This kind of effector is expected to be under purifying selective pressure. Here, we aim at identifying the effector repertoire of Venturia inaequalis, the agent of apple scab, assessing its evolutionary dynamics and studying the role of candidate effectors in virulence. We sequenced de novo 90 strains, collected on apple and on their wild relatives and differing in their host range or virulence to study allelic polymorphism at 880 putative effector loci. The top-20 hits for highly conserved sequences were selected as candidates for further functional analyses. In planta gene expression showed a significant induction of these conserved SSP at the early stage of plant infection. Their functions were investigated using targeted deletion mutants. Remarkably, loss of two conserved SSPs resulted in reduced aggressiveness without any alteration in growth in vitro. GFP-tagged protein and heterologous expression were used to assess their sub-cellular localization in infected apple leaves. Involvement of theses SSP in the modulation of host defence was also investigated using an apple full-transcript microarray. Highly conserved effectors will be used to screen for novel R genes in Malus genotypes characterized for their high resistance to scab. This combined knowledge should enable us to understand strategies used by the pathogen to overcome defences in apple and consequently to build more durable resistance towards apple scab

    Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study

    No full text
    corecore