1,532 research outputs found

    Measurement of zero degree single photon energy spectra for sqrt(s) = 7TeV proton-proton collisions at LHC

    Get PDF
    In early 2010, the Large Hadron Collider forward (LHCf) experiment measured very forward neutral particle spectra in LHC proton-proton collisions. From a limited data set taken under the best beam conditions (low beam-gas background and low occurance of pile-up events), the single photon spectra at sqrt(s)=7TeV and pseudo-rapidity (eta) ranges from 8.81 to 8.99 and from 10.94 to infinity were obtained for the first time and are reported in this paper. The spectra from two independent LHCf detectors are consistent with one another and serve as a cross check of the data. The photon spectra are also compared with the predictions of several hadron interaction models that are used extensively for modeling ultra high energy cosmic ray showers. Despite conservative estimates for the systematic errors, none of the models agree perfectly with the measurements. A notable difference is found between the data and the DPMJET 3.04 and PYTHIA 8.145 hadron interaction models above 2TeV where the models predict higher photon yield than the data. The QGSJET II-03 model predicts overall lower photon yield than the data, especially above 2TeV in the rapidity range 8.81<eta<8.99

    Consequences of a Possible Di-Gamma Resonace at TRISTAN

    Full text link
    If high mass di-gamma events observed at LEP are due to the production of a di-gamma resonance via its leptonic coupling, its consequences can be observed at TRISTAN. We find that a predicted ZZ decay branching rate is too small to account for the observed events if the resonance spin is zero, due to a strong cancellation in the decay amplitudes. Such a cancellation is absent if the resonance has a spin two. We study the consequences of a tensor production in the processes e+ee+ee^+e^- \to e^+e^-, μ+μ\mu^+\mu^- and γγ\gamma\,\gamma at TRISTAN energies. Complete helicity amplitudes with tensor boson exchange contributions are given, and the signal can clearly be identified from various distributions. TRISTAN experiments are also sensitive to the virtual tensor boson exchange effects, which reduce to the contact interaction terms in the high mass limit.Comment: 23 pages in revtex, 7 figures (not included) available upon request, KEK-TH-35

    The First Year of the Large Hadron Collider: A Brief Review

    Full text link
    The first year of LHC data taking provided an integrated luminosity of about 35/pb in proton-proton collisions at sqrt(s)=7 TeV. The accelerator and the experiments have demonstrated an excellent performance. The experiments have obtained important physics results in many areas, ranging from tests of the Standard Model to searches for new particles. Among other results the physics highlights have been the measurements of the W-, Z-boson and t t-bar production cross-sections, improved limits on supersymmetric and other hypothetical particles and the observation of jet-quenching, elliptical flow and J/Psi suppression in lead-lead collisions at sqrt(sNN) = 2.76 TeV.Comment: 11 pages, 9 figures, invited brief review for Mod. Phys. Lett.

    Casting Light on Dark Matter

    Full text link
    The prospects for detecting a candidate supersymmetric dark matter particle at the LHC are reviewed, and compared with the prospects for direct and indirect searches for astrophysical dark matter. The discussion is based on a frequentist analysis of the preferred regions of the Minimal supersymmetric extension of the Standard Model with universal soft supersymmetry breaking (the CMSSM). LHC searches may have good chances to observe supersymmetry in the near future - and so may direct searches for astrophysical dark matter particles, whereas indirect searches may require greater sensitivity, at least within the CMSSM.Comment: 16 pages, 13 figures, contribution to the proceedings of the LEAP 2011 Conferenc

    Freeze-In Production of FIMP Dark Matter

    Get PDF
    We propose an alternate, calculable mechanism of dark matter genesis, "thermal freeze-in," involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional "thermal freeze-out" production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis.Comment: 30 pages, 7 figures, PDFLaTex. References adde

    Measurement of zero degree inclusive photon energy spectra for s=\sqrt{s}= 900 GeV proton-proton collisions at LHC

    Get PDF
    The inclusive photon energy spectra measured by the Large Hadron Collider forward (LHCf) experiment in the very forward region of LHC proton-proton collisions at s=\sqrt{s}= 900 GeV are reported. The results from the analysis of 0.30 nb1\mathrm{nb^{-1}} of data collected in May 2010 in the two pseudorapidity regions of η>10.15\eta > 10.15 and 8.77<η<9.468.77 < \eta < 9.46 are compared with the predictions of the hadronic interaction models DPMJET 3.04, EPOS 1.99, PYTHIA 8.145, QGSJET I -.1em I-03 and SIBYLL 2.1, which are widely used in ultra-high-energy cosmic-ray experiments. EPOS 1.99 and SYBILL 2.1 show a reasonable agreement with the spectral shape of the experimental data, whereas they predict lower cross-sections than the data. The other models, DPMJET 3.04, QGSJET I -.1em I-03 and PYTHIA 8.145, are in good agreement with the data below 300 GeV but predict harder energy spectra than the data above 300 GeV. The results of these comparisons exhibited features similar to those for the previously reported data for s=\sqrt{s}= 7 TeV collisions

    Measurement of forward neutral pion transverse momentum spectra for s\sqrt{s} = 7TeV proton-proton collisions at LHC

    Full text link
    The inclusive production rate of neutral pions in the rapidity range greater than y=8.9y=8.9 has been measured by the Large Hadron Collider forward (LHCf) experiment during LHC s=7\sqrt{s}=7\,TeV proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high energy particle physics and for modeling ultra-high-energy cosmic-ray showers.Comment: 18 Pages, 10 figures, submitted to Phys. Rev.
    corecore