38 research outputs found
Recommended from our members
Metals in Chemistry and Biology: Computational Chemistry Studies
Numerous enzymatic reactions are controlled by the chemistry of metallic ions. This dissertation investigates the electronic properties of three transition metal (copper, chromium, and nickel) complexes and describes modeling studies performed on glutathione synthetase. (1) Copper nitrene complexes were computationally characterized, as these complexes have yet to be experimentally isolated. (2) Multireference calculations were carried out on a symmetric C2v chromium dimer derived from the crystal structure of the [(tBu3SiO)Cr(µ-OSitBu3)]2 complex. (3) The T-shaped geometry of a three-coordinate β-diketiminate nickel(I) complex with a CO ligand was compared and contrasted with isoelectronic and isosteric copper(II) complexes. (4) Glutathione synthetase (GS), an enzyme that belongs to the ATP-grasp superfamily, catalyzes the (Mg, ATP)-dependent biosynthesis of glutathione (GSH) from γ-glutamylcysteine and glycine. The free and reactant forms of human GS (wild-type and glycine mutants) were modeled computationally by employing molecular dynamics simulations, as these currently have not been structurally characterized
Recommended from our members
Bonding and Structure of Copper Nitrenes
Article discussing research on the bonding and structure of copper nitrenes
The Interaction of Tungsten Dust with Human Skin Cells
In this chapter, we evaluate the tungsten (W) nanoparticle toxicity with respect to the normal human skin fibroblast cell. Tungsten dust formation is expected in the tokamak-type nuclear fusion installations, regarded as future devices for large-scale, sustainable, and carbon-free energy. This dust, composed of tungsten particles of variable size, from nanometers to micrometers, could be harmful to humans in the case of loss of vacuum accident (LOVA). In order to undertake the toxicity studies, tokamak-relevant dust has been deliberately produced in laboratory and afterward analyzed. Following that, cytotoxicity tests were performed using normal human skin fibroblast cell lines, BJ ATCC CRL 2522. Our study concludes that, at a low concentration (until 100 μg/mL), no cytotoxic effect of tungsten nanoparticles was observed. In contrast, at higher concentrations (up to 2 mg/mL), nanometric dust presents toxic effects on the cells
Imidazolium salt and dielectric barrier discharge plasma treatment to enhance the conductivity of fabrics impregnated with pedot:PSS
Conductive textiles are a class of materials with a growing interest due to their potential applications in medical, healthcare, comfort, protective clothing, and sportswear sectors. They can be used for the development of smart textiles able to answer to different external stimuli such as thermal, mechanical, chemical, electrical, magnetic, and optical. The complex poly (3,4-ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS) is the most explored polymer to prepare conductive textiles. Dopants can be introduced to add or remove electrons from the backbone of PEDOT:PSS, resulting in increased conductivity. Salts such as 1-butyl-3-methylimidazolium octyl sulphate (IZ) may promote ionic interactions with PEDOT:PSS, stimulating a microstructure reorganization. Moreover, the dielectric barrier discharge (DBD) plasma treatment has been shown to improve the adhesion of coatings by modifying the surface roughness, surface chemistry, and hydrophilicity of the fabrics. In this work, untreated and DBD plasma-treated polyester (PES) fabrics were impregnated with PEDOT:PSS with and without the addition of imidazolium salt (0.2M) as a dopant. Using the IZ, it was possible to adapt the textile materials into resistors, where the applied current converted electrical energy into heat. The developed textiles can be used to produce heating garments
The correlation-consistent composite approach: Application to the G3/99 test set
Article discussing research on the correlation consistent composite approach (ccCA) and an application to the G3/99 test set
Recommended from our members
Modeling wild type and mutant glutathione synthetase.
Glutathione syntethase (GS) is an enzyme that belongs to the ATP-grasp superfamily and catalyzes the second step in the biosynthesis of glutathione. GS has been purified and sequenced from a variety of biological sources; still, its exact mechanism is not fully understood. Four highly conserved residues were identified in the binding site of human GS. Additionally, the G-loop residues that close the active site during catalysis were found to be conserved. Since these residues are important for catalysis, their function was studied computationally by site-directed mutagenesis. Starting from the reported crystal structure of human GS, different conformations for the wild type and mutants were obtained using molecular dynamics technique. The key interactions between residues and ligands were detected and found to be essential for enzyme activity
The role of the glycine triad in human glutathione synthetase
International audienc
Rapid Turn-On Fluorescence Detection of Copper(II): Aromatic Substituent Effects on the Response Rate
Oxidative cyclization of <i>o</i>-phenylazo aniline was
utilized as a turn-on fluorescent probe of the copper(II) ion. The
number and the position of electron donating groups on the probes
were systematically varied to investigate the effect of aryl substituent
on reactivity toward copper ion. Among the series of analogous probes,
the 2,4,6-trimethoxy substituted probe exhibits not only a faster
(40-times faster) reaction but also a lower detection limit (20 times
lower) than previously reported probes under identical conditions.
The comparative kinetic studies reveal that both the number and the
position of substitution have a significant impact on the reactivity
toward copper, which will be discussed in the manuscript