648 research outputs found

    Quantification of the virus-host interaction in human T lymphotropic virus I infection

    Get PDF
    BACKGROUND: HTLV-I causes the disabling inflammatory disease HAM/TSP: there is no vaccine, no satisfactory treatment and no means of assessing the risk of disease or prognosis in infected people. Like many immunopathological diseases with a viral etiology the outcome of infection is thought to depend on the virus-host immunology interaction. However the dynamic virus-host interaction is complex and current models of HAM/TSP pathogenesis are conflicting. The CD8+ cell response is thought to be a determinant of both HTLV-I proviral load and disease status but its effects can obscure other factors. RESULTS: We show here that in the absence of CD8+ cells, CD4+ lymphocytes from HAM/TSP patients expressed HTLV-I protein significantly more readily than lymphocytes from asymptomatic carriers of similar proviral load (P = 0.017). A high rate of viral protein expression was significantly associated with a large increase in the prevalence of HAM/TSP (P = 0.031, 89% of cases correctly classified). Additionally, a high rate of Tax expression and a low CD8+ cell efficiency were independently significantly associated with a high proviral load (P = 0.005, P = 0.003 respectively). CONCLUSION: These results disentangle the complex relationship between immune surveillance, proviral load, inflammatory disease and viral protein expression and indicate that increased protein expression may play an important role in HAM/TSP pathogenesis. This has important implications for therapy since it suggests that interventions should aim to reduce Tax expression rather than proviral load per se

    The Effect of Ambient Air Pollution during Early Pregnancy on Fetal Ultrasonic Measurements during Mid-Pregnancy

    Get PDF
    BACKGROUND: Over the past decade there has been mounting evidence that ambient air pollution during pregnancy influences fetal growth. OBJECTIVES: This study was designed to examine possible associations between fetal ultrasonic measurements collected from 15,623 scans (13–26 weeks gestation) and ambient air pollution during early pregnancy. METHODS: We calculated mothers ’ average monthly exposures over the first 4 months of pregnancy for the following pollutants: particulate matter < 10 µm aerodynamic diameter (PM10), ozone, nitrogen dioxide, and sulfur dioxide. We examined associations with fetal femur length (FL), biparietal diameter (BPD), head circumference (HC), and abdominal circumference (AC). Final analyses included scans from only those women within 2 km of an air pollution monitoring site. We controlled for long-term trend, season, temperature, gestation, mother’s age, socioeconomic status, and fetal sex. RESULTS: A reduction in fetal AC was associated with O3 during days 31–60 [–1.42 mm; 95 % confidence interval (CI), –2.74 to –0.09], SO2 during days 61–90 (–1.67 mm; 95 % CI, –2.94 to –0.40), and PM10 during days 91–120 (–0.78 mm; 95 % CI, –1.49 to –0.08). Other results showed a reduction in BPD (–0.68 mm; 95 % CI, –1.09 to –0.27) associated with SO2 during days 0–30, a reduction in HC (–1.02 mm; 95 % CI, –1.78 to –0.26) associated with PM10 during days 91–120, and a reduction in FL associated with PM10 during days 0–30 (–0.28 mm; 95 % CI, –0.48 to –0.08) and 91–120 (–0.23; 95 % CI, –0.42 to –0.04). CONCLUSION: We found strong effects of ambient air pollution on ultrasound measures. Future research, including more individually detailed data, is needed to confirm our results. KEY WORDS: air pollution, fetal growth, pregnancy, temperature, ultrasound. Environ Health Perspect 116:362–369 (2008). doi:10.1289/ehp.10720 available vi

    Wake Development behind Paired Wings with Tip and Root Trailing Vortices: Consequences for Animal Flight Force Estimates

    Get PDF
    Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV) of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body), angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals

    Pair-breaking quantum phase transition in superconducting nanowires

    Full text link
    A quantum phase transition (QPT) between distinct ground states of matter is a wide-spread phenomenon in nature, yet there are only a few experimentally accessible systems where the microscopic mechanism of the transition can be tested and understood. These cases are unique and form the experimentally established foundation for our understanding of quantum critical phenomena. Here we report the discovery that a magnetic-field-driven QPT in superconducting nanowires - a prototypical 1d-system - can be fully explained by the critical theory of pair-breaking transitions characterized by a correlation length exponent ν1\nu \approx 1 and dynamic critical exponent z2z \approx 2. We find that in the quantum critical regime, the electrical conductivity is in agreement with a theoretically predicted scaling function and, moreover, that the theory quantitatively describes the dependence of conductivity on the critical temperature, field magnitude and orientation, nanowire cross sectional area, and microscopic parameters of the nanowire material. At the critical field, the conductivity follows a T(d2)/zT^{(d-2)/z} dependence predicted by phenomenological scaling theories and more recently obtained within a holographic framework. Our work uncovers the microscopic processes governing the transition: The pair-breaking effect of the magnetic field on interacting Cooper pairs overdamped by their coupling to electronic degrees of freedom. It also reveals the universal character of continuous quantum phase transitions.Comment: 22 pages, 5 figure

    A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales

    Get PDF
    Fourier transform infrared (FTIR) spectroscopic data was used to classify wood samples from nine species within the Fagales and Malpighiales using a range of multivariate statistical methods. Taxonomic classification of the family Fagaceae and Betulaceae from Angiosperm Phylogenetic System Classification (APG II System) was successfully performed using supervised pattern recognition techniques. A methodology for wood sample discrimination was developed using both sapwood and heartwood samples. Ten and eight biomarkers emerged from the dataset to discriminate order and family, respectively. In the species studied FTIR in combination with multivariate analysis highlighted significant chemical differences in hemicelluloses, cellulose and guaiacyl (lignin) and shows promise as a suitable approach for wood sample classification

    Information transmission in oscillatory neural activity

    Full text link
    Periodic neural activity not locked to the stimulus or to motor responses is usually ignored. Here, we present new tools for modeling and quantifying the information transmission based on periodic neural activity that occurs with quasi-random phase relative to the stimulus. We propose a model to reproduce characteristic features of oscillatory spike trains, such as histograms of inter-spike intervals and phase locking of spikes to an oscillatory influence. The proposed model is based on an inhomogeneous Gamma process governed by a density function that is a product of the usual stimulus-dependent rate and a quasi-periodic function. Further, we present an analysis method generalizing the direct method (Rieke et al, 1999; Brenner et al, 2000) to assess the information content in such data. We demonstrate these tools on recordings from relay cells in the lateral geniculate nucleus of the cat.Comment: 18 pages, 8 figures, to appear in Biological Cybernetic

    Modelling height in adolescence: a comparison of methods for estimating the age at peak height velocity

    Get PDF
    Background: Controlling for maturational status and timing is crucial in lifecourse epidemiology. One popular non-invasive measure of maturity is the age at peak height velocity (PHV). There are several ways to estimate age at PHV, but it is unclear which of these to use in practice. Aim: To find the optimal approach for estimating age at PHV. Subjects and methods: Methods included the Preece & Baines non-linear growth model, multi-level models with fractional polynomials, SuperImposition by Translation And Rotation (SITAR) and functional data analysis. These were compared through a simulation study and using data from a large cohort of adolescent boys from the Christ’s Hospital School. Results: The SITAR model gave close to unbiased estimates of age at PHV, but convergence issues arose when measurement error was large. Preece & Baines achieved close to unbiased estimates, but shares similarity with the data generation model for our simulation study and was also computationally inefficient, taking 24 hours to fit the data from Christ’s Hospital School. Functional data analysis consistently converged, but had higher mean bias than SITAR. Almost all methods demonstrated strong correlations (r > 0.9) between true and estimated age at PHV. Conclusions: Both SITAR or the PBGM are useful models for adolescent growth and provide unbiased estimates of age at peak height velocity. Care should be taken as substantial bias and variance can occur with large measurement error

    Analysis and Functional Consequences of Increased Fab-Sialylation of Intravenous Immunoglobulin (IVIG) after Lectin Fractionation

    Get PDF
    It has been proposed that the anti-inflammatory effects of intravenous immunoglobulin (IVIG) might be due to the small fraction of Fc-sialylated IgG. In this study we biochemically and functionally characterized sialic acid-enriched IgG obtained by Sambucus nigra agglutinin (SNA) lectin fractionation. Two main IgG fractions isolated by elution with lactose (E1) or acidified lactose (E2) were analyzed for total IgG, F(ab’)2 and Fc-specific sialic acid content, their pattern of specific antibodies and anti-inflammatory potential in a human in vitro inflammation system based on LPS- or PHA-stimulated whole blood. HPLC and LC-MS testing revealed an increase of sialylated IgG in E1 and more substantially in the E2 fraction. Significantly, the increased amount of sialic acid residues was primarily found in the Fab region whereas only a minor increase was observed in the Fc region. This indicates preferential binding of the Fab sialic acid to SNA. ELISA analyses of a representative range of pathogen and auto-antigens indicated a skewed antibody pattern of the sialylated IVIG fractions. Finally, the E2 fraction exerted a more profound anti-inflammatory effect compared to E1 or IVIG, evidenced by reduced CD54 expression on monocytes and reduced secretion of MCP-1 (CCL2); again these effects were Fab- but not Fc-dependent. Our results show that SNA fractionation of IVIG yields a minor fraction (approx. 10%) of highly sialylated IgG, wherein the sialic acid is mainly found in the Fab region. The tested anti-inflammatory activity was associated with Fab not Fc sialylation

    From where did the 2009 'swine-origin' influenza A virus (H1N1) emerge?

    Get PDF
    The swine-origin influenza A (H1N1) virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative framework coordinating surveillance, research and commercial work with this virus, and maintaining a registry of all influenza isolates

    Guard Cell Starch Degradation Yields Glucose for Rapid Stomatal Opening in Arabidopsis.

    Get PDF
    Starch in Arabidopsis (Arabidopsis thaliana) guard cells is rapidly degraded at the start of the day by the glucan hydrolases α-AMYLASE3 (AMY3) and β-AMYLASE1 (BAM1) to promote stomatal opening. This process is activated via phototropin-mediated blue light signaling downstream of the plasma membrane H+-ATPase. It remains unknown how guard cell starch degradation integrates with light-regulated membrane transport processes in the fine control of stomatal opening kinetics. We report that H+, K+, and Cl- transport across the guard cell plasma membrane is unaltered in the amy3 bam1 mutant, suggesting that starch degradation products do not directly affect the capacity to transport ions. Enzymatic quantification revealed that after 30 min of blue light illumination, amy3 bam1 guard cells had similar malate levels as the wild type, but had dramatically altered sugar homeostasis, with almost undetectable amounts of Glc. Thus, Glc, not malate, is the major starch-derived metabolite in Arabidopsis guard cells. We further show that impaired starch degradation in the amy3 bam1 mutant resulted in an increase in the time constant for opening of 40 min. We conclude that rapid starch degradation at dawn is required to maintain the cytoplasmic sugar pool, clearly needed for fast stomatal opening. The conversion and exchange of metabolites between subcellular compartments therefore coordinates the energetic and metabolic status of the cell with membrane ion transport
    corecore