4 research outputs found

    FEA analysis and design optimization for a multifunctional piece of furniture

    No full text
    The paper presents an original approach to the integration of computer aided design and finite element analysis for a multifunctional piece of furniture using CATIA Generative Structural Analysis workbench. Finite Element Analysis (FEA) application is an important engineering technique in the furniture industry. FEA is an accurate method for numerical solution of field problems. A major problem of mesh generation today is access to CAD geometry in a efficient and precise manner. Starting with a solid modelling for the creation of the desired piece of multifunctional furniture is used in this case, the automatic generation of the finite element meshes. Getting more accurate results for the mesh refinement process can be made by changing parameters. The article outlines the developed model for analysing the supporting structure of the armchair. This model provides simulating of the different loads and checking the raised stresses and deformation in the structures analysed. The main objective of this research is to evaluate strength of wooden cedar armchair for a person weighing 140 kg and for this the finite element analysis (FEA) has been used. Multifunctional furniture is the answer to the challenges contemporary lifestyle, creativity in design activities that require optimal space utilization and reducing costs

    Dynamic Response of Vibratory Piling Machines for Ground Foundations

    No full text
    Vibrating technological equipment for the introduction of piles and columns into the ground of construction foundations (named vibratory piling machines) is crucial in the process of building stable and resilient foundations for civil engineering, hydrotechnical construction, special construction (e.g., military constructions), bridges, roads and industrial platforms. During the works carried out by the construction companies in various geographical areas of Romania, particularities of the dynamic technological regimes influenced by the nature of the land were identified at the deep introduction of the construction elements in the form of piles or circular (tubular) columns. The results of applied research, rheological modeling and optimization of vibrating equipment, highlight the need for an analytical approach that takes into account the parametric variations of the elastic and damping characteristics of some categories of soils on the depth of piles or foundation columns. In this context, the paper presents the calculation model with the dynamic response for the vibrating equipment of insertion with disturbing forces of 200–1250 kN for piles or columns with lengths of 10–30 m. The novelty of the research study consists in the linear rheological model, which was adopted in the form of a Maxwell–Voigt–Kelvin schematic of the type (E-V)–(E|V), with a discrete variation in four values for stiffness and damping of the soil, as the piles or columns vibrate and advance in the ground foundation. Practical experience of the authors in the field of using vibrogenerators for the introduction of piles in various types of ground foundations led to the adoption of the rheological model with variable damping coefficients depending on the depth of penetration into the soil. The curves of the dissipated power confirm the experimental data obtained in situ, in accordance with the rheological indoor tests of the different types of soil foundations

    Dynamic Response of the Inertial Platform of the Laser ELI-NP Magurele-Bucharest Facility

    No full text
    Previous studies on the vibrational behavior of the inertial platform installed at ELI-NP, in Magurele-Bucharest have reported eigenfrequencies in the domain in which excitations can occur from earthquakes which manifests itself periodically in this geographical area. The paper aimed to study the vibrational response that may occur, due to human activities or natural phenomena (earthquakes), at the inertial platform of the Laser + Gamma building within the ELI-NP complex. The large mass of the platform, 54,000 tons in full condition, must ensure that the experiments are carried out without being disturbed by unwanted vibrations. The laser and gamma beam must be very precisely positioned and the shocks and vibration from the external environment must be damped or absorbed. To realize this, the behavior of the inertial concrete platform at external excitations was studied based on a model with finite elements. The response to the forced vibrations of the platform and the possible behavior in case of an earthquake were obtained

    Evaluation of the Fatigue Behavior and Failure Mechanisms of 4340 Steel Coated with WIP-C1 (Ni/CrC) by Cold Spray

    No full text
    Fatigue behavior of standardized 4340 steel samples uniformly coated with WIP-C1 (Ni/CrC) by cold spray was investigated. In particular, when a crack appeared at the interface between the base material and the coating, the cause of it as well as its shape and size were investigated. Fatigue loading was applied by alternating symmetrical cycles. Scanning electron microscopy was used to study the onset of failure and the subsequent propagation of cracks. The interface between the two materials performed well—in all samples, the initial crack propagation occurred on the surface of the base material, continuing into the coating material and in the interior of the base material. The fatigue durability curve of stress vs. number of cycles (S-N) presented a conventional form for a metallic alloy and the coating material had an influence only on the damage on the surface of the base material
    corecore