453 research outputs found
Synthesis of high‐surface area mesoporous SiC with hierarchical porosity for use as catalyst support
Porous SiC with a hierarchical mesoporous structure is a promising material for high‐performance catalytic systems because of its high thermal conductivity, high chemical inertness at high temperature, and oxidation resistance. Attempts to produce high‐surface area hierarchical SiC have typically been made by using porous carbon as a template and reacting it with either Si or SiO2 at high temperature under inert atmosphere. Because the reaction mechanism with Si involves a carbon dissolution step, and the reaction with SiO2 is highly dependent on C‐SiO2 dispersion, the porous structure of the carbon template is not maintained, and the reaction yields nonporous SiC. In this work, mesoporous SiC has been synthesized using a novel hard‐template methodology. SiC was prepared from hierarchical (mesoporous) silica which served as a solid template. Carbon deposition was done by Carbon Vapor Deposition (CVD) using CH4 as carbon precursor, where different temperatures and reaction times were tested to optimize the carbon coating. The synthesized SiC retained 61 (118 m2/g) and 47% (0.3 cm3/g) of the BET surface area and the mesopore volume of the original SiO2, which is 10 times higher than the retention reported for other template methods used to produce high surface area SiC.Financial support from the Generalitat Valenciana under the PhD grant Vali + d and the “Ministerio de Economía y Competitividad” (Grant MAT2017-86992-R), and action Mobility of Alicante University is gratefully acknowledged
Phenotyping conservation agriculture management effects on ground and aerial remote sensing assessments of maize hybrids performance in Zimbabwe
n the coming decades, Sub-Saharan Africa (SSA) faces challenges to sustainably increasefood production while keeping pace with continued population growth. Conservation agriculture(CA) has been proposed to enhance soil health and productivity to respond to this situation.Maize is the main staple food in SSA. To increase maize yields, the selection of suitable genotypes andmanagement practices for CA conditions has been explored using remote sensing tools. They may playa fundamental role towards overcoming the traditional limitations of data collection and processing inlarge scale phenotyping studies. We present the result of a study in which Red-Green-Blue (RGB) andmultispectral indexes were evaluated for assessing maize performance under conventional ploughing(CP) and CA practices. Eight hybrids under different planting densities and tillage practices weretested. The measurements were conducted on seedlings at ground level (0.8 m) and from an unmannedaerial vehicle (UAV) platform (30 m), causing a platform proximity effect on the images resolution thatdid not have any negative impact on the performance of the indexes. Most of the calculated indexes(Green Area (GA) and Normalized Difference Vegetation Index (NDVI)) were significantly affectedby tillage conditions increasing their values from CP to CA. Indexes derived from the RGB-imagesrelated to canopy greenness performed better at assessing yield differences, potentially due to thegreater resolution of the RGB compared with the multispectral data, although this performance wasmore precise for CP than CA.The correlations of the multispectral indexes with yield were improvedby applying a soil-mask derived from a NDVI threshold with the aim of corresponding pixels withvegetation. The results of this study highlight the applicability of remote sensing approaches basedon RGB images to the assessment of crop performance and hybrid choice
Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques
Maize is the most cultivated cereal in Africa in terms of land area and production, but low soil nitrogen availability often constrains yields. Developing new maize varieties with high and reliable yields using traditional crop breeding techniques in field conditions can be slow and costly. Remote sensing has become an important tool in the modernization of field-based high-throughput plant phenotyping (HTPP), providing faster gains towards the improvement of yield potential and adaptation to abiotic and biotic limiting conditions. We evaluated the performance of a set of remote sensing indices derived from red-green-blue (RGB) images along with field-based multispectral normalized difference vegetation index (NDVI) and leaf chlorophyll content (SPAD values) as phenotypic traits for assessing maize performance under managed low-nitrogen conditions. HTPP measurements were conducted from the ground and from an unmanned aerial vehicle (UAV). For the ground-level RGB indices, the strongest correlations to yield were observed with hue, greener green area (GGA), and a newly developed RGB HTPP index, NDLab (normalized difference Commission Internationale de I´Edairage (CIE)Lab index), while GGA and crop senescence index (CSI) correlated better with grain yield from the UAV. Regarding ground sensors, SPAD exhibited the closest correlation with grain yield, notably increasing in its correlation when measured in the vegetative stage. Additionally, we evaluated how different HTPP indices contributed to the explanation of yield in combination with agronomic data, such as anthesis silking interval (ASI), anthesis date (AD), and plant height (PH). Multivariate regression models, including RGB indices (R2 > 0.60), outperformed other models using only agronomic parameters or field sensors (R2 > 0.50), reinforcing RGB HTPP's potential to improve yield assessments. Finally, we compared the low-N results to the same panel of 64 maize genotypes grown under optimal conditions, noting that only 11% of the total genotypes appeared in the highest yield producing quartile for both trials. Furthermore, we calculated the grain yield loss index (GYLI) for each genotype, which showed a large range of variability, suggesting that low-N performance is not necessarily exclusive of high productivity in optimal conditions
Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe
Enhancing nitrogen fertilization efficiency for improving yield is a major challenge for smallholder farming systems. Rapid and cost-effective methodologies with the capability to assess the effects of fertilization are required to facilitate smallholder farm management. This study compares maize leaf and canopy-based approaches for assessing N fertilization performance under different tillage, residue coverage and top-dressing conditions in Zimbabwe. Among the measurements made on individual leaves, chlorophyll readings were the best indicators for both N content in leaves (R < 0.700) and grain yield (GY) (R < 0.800). Canopy indices reported even higher correlation coefficients when assessing GY, especially those based on the measurements of the vegetation density as the green area indices (R < 0.850). Canopy measurements from both ground and aerial platforms performed very similar, but indices assessed from the UAV performed best in capturing the most relevant information from the whole plot and correlations with GY and leaf N content were slightly higher. Leaf-based measurements demonstrated utility in monitoring N leaf content, though canopy measurements outperformed the leaf readings in assessing GY parameters, while providing the additional value derived from the affordability and easiness of using a pheno-pole system or the high-throughput capacities of the UAVs
Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques
Maize is the most cultivated cereal in Africa in terms of land area and production, but low soil nitrogen availability often constrains yields. Developing new maize varieties with high and reliable yields using traditional crop breeding techniques in field conditions can be slow and costly. Remote sensing has become an important tool in the modernization of field-based high-throughput plant phenotyping (HTPP), providing faster gains towards the improvement of yield potential and adaptation to abiotic and biotic limiting conditions. We evaluated the performance of a set of remote sensing indices derived from red–green–blue (RGB) images along with field-based multispectral normalized difference vegetation index (NDVI) and leaf chlorophyll content (SPAD values) as phenotypic traits for assessing maize performance under managed low-nitrogen conditions. HTPP measurements were conducted from the ground and from an unmanned aerial vehicle (UAV). For the ground-level RGB indices, the strongest correlations to yield were observed with hue, greener green area (GGA), and a newly developed RGB HTPP index, NDLab (normalized difference Commission Internationale de I´Edairage (CIE)Lab index), while GGA and crop senescence index (CSI) correlated better with grain yield from the UAV. Regarding ground sensors, SPAD exhibited the closest correlation with grain yield, notably increasing in its correlation when measured in the vegetative stage. Additionally, we evaluated how different HTPP indices contributed to the explanation of yield in combination with agronomic data, such as anthesis silking interval (ASI), anthesis date (AD), and plant height (PH). Multivariate regression models, including RGB indices (R2 > 0.60), outperformed other models using only agronomic parameters or field sensors (R2 > 0.50), reinforcing RGB HTPP’s potential to improve yield assessments. Finally, we compared the low-N results to the same panel of 64 maize genotypes grown under optimal conditions, noting that only 11% of the total genotypes appeared in the highest yield producing quartile for both trials. Furthermore, we calculated the grain yield loss index (GYLI) for each genotype, which showed a large range of variability, suggesting that low-N performance is not necessarily exclusive of high productivity in optimal conditions.This research and APC was funded by Bill & Melinda Gates Foundation and USAID Stress Tolerant Maize for Africa program, grant number [OPP1134248], and the MAIZE CGIAR research program. The CGIAR Research Program MAIZE receives W1&W2 support from the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Sweden, Switzerland, U.K., U.S., and the World Bank
Comparative performance of ground vs. aerially assessed RGB and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization
Low soil fertility is one of the factors most limiting agricultural production, with phosphorus deficiency being among the main factors, particularly in developing countries. To deal with such environmental constraints, remote sensing measurements can be used to rapidly assess crop performance and to phenotype a large number of plots in a rapid and cost-effective way. We evaluated the performance of a set of remote sensing indices derived from Red-Green-Blue (RGB) images and multispectral (visible and infrared) data as phenotypic traits and crop monitoring tools for early assessment of maize performance under phosphorus fertilization. Thus, a set of 26 maize hybrids grown under field conditions in Zimbabwe was assayed under contrasting phosphorus fertilization conditions. Remote sensing measurements were conducted in seedlings at two different levels: at the ground and from an aerial platform. Within a particular phosphorus level, some of the RGB indices strongly correlated with grain yield. In general, RGB indices assessed at both ground and aerial levels correlated in a comparable way with grain yield except for indices a* and u*, which correlated better when assessed at the aerial level than at ground level and Greener Area (GGA) which had the opposite correlation. The Normalized Difference Vegetation Index (NDVI) evaluated at ground level with an active sensor also correlated better with grain yield than the NDVI derived from the multispectral camera mounted in the aerial platform. Other multispectral indices like the Soil Adjusted Vegetation Index (SAVI) performed very similarly to NDVI assessed at the aerial level but overall, they correlated in a weaker manner with grain yield than the best RGB indices. This study clearly illustrates the advantage of RGB-derived indices over the more costly and time-consuming multispectral indices. Moreover, the indices best correlated with GY were in general those best correlated with leaf phosphorous content. However, these correlations were clearly weaker than against grain yield and only under low phosphorous conditions. This work reinforces the effectiveness of canopy remote sensing for plant phenotyping and crop management of maize under different phosphorus nutrient conditions and suggests that the RGB indices are the best option
Differences in adolescent activity and dietary behaviors across home, school, and other locations warrant location-specific intervention approaches
Background
Investigation of physical activity and dietary behaviors across locations can inform “setting-specific” health behavior interventions and improve understanding of contextual vulnerabilities to poor health. This study examined how physical activity, sedentary time, and dietary behaviors differed across home, school, and other locations in young adolescents.
Methods
Participants were adolescents aged 12–16 years from the Baltimore-Washington, DC and the Seattle areas from a larger cross-sectional study. Participants (n = 472) wore an accelerometer and Global Positioning Systems (GPS) tracker (Mean days = 5.12, SD = 1.62) to collect location-based physical activity and sedentary data. Participants (n = 789) completed 24-h dietary recalls to assess dietary behaviors and eating locations. Spatial analyses were performed to classify daily physical activity, sedentary time patterns, and dietary behaviors by location, categorized as home, school, and “other” locations.
Results
Adolescents were least physically active at home (2.5 min/hour of wear time) and school (2.9 min/hour of wear time) compared to “other” locations (5.9 min/hour of wear time). Participants spent a slightly greater proportion of wear time in sedentary time when at school (41 min/hour of wear time) than at home (39 min/hour of wear time), and time in bouts lasting ≥30 min (10 min/hour of wear time) and mean sedentary bout duration (5 min) were highest at school. About 61% of daily energy intake occurred at home, 25% at school, and 14% at “other” locations. Proportionately to energy intake, daily added sugar intake (5 g/100 kcal), fruits and vegetables (0.16 servings/100 kcal), high calorie beverages (0.09 beverages/100 kcal), whole grains (0.04 servings/100 kcal), grams of fiber (0.65 g/100 kcal), and calories of fat (33 kcal/100 kcal) and saturated fat (12 kcal/100 kcal) consumed were nutritionally least favorable at “other” locations. Daily sweet and savory snacks consumed was highest at school (0.14 snacks/100 kcal).
Conclusions
Adolescents’ health behaviors differed based on the location/environment they were in. Although dietary behaviors were generally more favorable in the home and school locations, physical activity was generally low and sedentary time was higher in these locations. Health behavior interventions that address the multiple locations in which adolescents spend time and use location-specific behavior change strategies should be explored to optimize health behaviors in each location
Recommended from our members
Somatic mutation landscapes at single-molecule resolution.
Somatic mutations drive the development of cancer and may contribute to ageing and other diseases1,2. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts
Hypoxia compromises the mitochondrial metabolism of Alzheimer’s disease microglia via HIF1
Genetic Alzheimer’s disease (AD) risk factors associate with reduced defensive amyloid β plaque-associated microglia (AβAM), but the contribution of modifiable AD risk factors to microglial dysfunction is unknown. In AD mouse models, we observe con- comitant activation of the hypoxia-inducible factor 1 (HIF1) pathway and transcription of mitochondrial-related genes in AβAM, and elongation of mitochondria, a cellular response to maintain aerobic respiration under low nutrient and oxygen conditions. Overactivation of HIF1 induces microglial quiescence in cellulo, with lower mitochondrial respiration and proliferation. In vivo, overstabilization of HIF1, either genetically or by exposure to systemic hypoxia, reduces AβAM clustering and proliferation and increases Aβ neuropathology. In the human AD hippocampus, upregulation of HIF1α and HIF1 target genes correlates with reduced Aβ plaque microglial coverage and an increase of Aβ plaque-associated neuropathology. Thus, hypoxia (a modifiable AD risk factor) hijacks microglial mitochondrial metabolism and converges with genetic susceptibility to cause AD microglial dysfunction
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
- …