32 research outputs found

    Expression and cellular localization of hepcidin mRNA and protein in normal rat brain

    Get PDF
    Abstract Background Hepcidin is a peptide hormone belonging to the defensin family of cationic antimicrobial molecules that has an essential role in systemic iron homeostasis. The peptide is synthesised by hepatocytes and transported in the circulation to target tissues where it regulates the iron export function of the ferrous iron permease, ferroportin. In the brain hepcidin protein has been identified using immuno-histochemistry and mRNA by real-time PCR but not by in situ hybridisation raising the question of whether there is measurable transcription of the hepcidin gene in the central nervous system. Alternatively hepcidin could be transported as a hormone to the brain via the circulation. Results By RT-PCR hepcidin mRNA was present at low level throughout normal rat brain while in situ hybridisation to detect low-abundant mRNA revealed that transcripts were restricted to endothelium of blood vessels and choroid plexus. In contrast, hepcidin protein analysed by immuno-histochemistry was highly expressed in blood vessels, in endothelium and in pericytes. Hepcidin was also present in glial cells and in the olfactory bulb, sub-ventricular zone and dentate gyrus, areas where neurogenesis and synaptic plasticity are maintained throughout adult life. The hepcidin species identified by Western blotting in sub-ventricular zone, cortex and hippocampus migrated as a ~2.8 kDa band, identical in size to hepcidin present in normal rat serum suggesting that hepcidin in brain was the full-length biologically active 25 amino acid peptide. Hepcidin co-localised with ferroportin in ependymal cells of the sub-ventricular zone and in the corpus callosum consistent with a regulatory role in iron metabolism at these sites. Conclusions Hepcidin protein was widely expressed in brain parenchyma while levels of hepcidin gene transcription appeared to be below the limits of detection of the in situ hybridisation probes. This disparity suggests that not all hepcidin in the brain is transcribed in situ and may originate in part outside the brain. The properties of hepcidin as a cationic peptide hormone are reflected in the finding of hepcidin in the walls of blood vessels and in pericytes and glia, cells that may be involved in transporting the peptide into brain interstitium

    Expression and cellular localization of hepcidin mRNA and protein in normal rat brain.

    Get PDF
    BACKGROUND: Hepcidin is a peptide hormone belonging to the defensin family of cationic antimicrobial molecules that has an essential role in systemic iron homeostasis. The peptide is synthesised by hepatocytes and transported in the circulation to target tissues where it regulates the iron export function of the ferrous iron permease, ferroportin. In the brain hepcidin protein has been identified using immuno-histochemistry and mRNA by real-time PCR but not by in situ hybridisation raising the question of whether there is measurable transcription of the hepcidin gene in the central nervous system. Alternatively hepcidin could be transported as a hormone to the brain via the circulation. RESULTS: By RT-PCR hepcidin mRNA was present at low level throughout normal rat brain while in situ hybridisation to detect low-abundant mRNA revealed that transcripts were restricted to endothelium of blood vessels and choroid plexus. In contrast, hepcidin protein analysed by immuno-histochemistry was highly expressed in blood vessels, in endothelium and in pericytes. Hepcidin was also present in glial cells and in the olfactory bulb, sub-ventricular zone and dentate gyrus, areas where neurogenesis and synaptic plasticity are maintained throughout adult life. The hepcidin species identified by Western blotting in sub-ventricular zone, cortex and hippocampus migrated as a ~2.8 kDa band, identical in size to hepcidin present in normal rat serum suggesting that hepcidin in brain was the full-length biologically active 25 amino acid peptide. Hepcidin co-localised with ferroportin in ependymal cells of the sub-ventricular zone and in the corpus callosum consistent with a regulatory role in iron metabolism at these sites. CONCLUSIONS: Hepcidin protein was widely expressed in brain parenchyma while levels of hepcidin gene transcription appeared to be below the limits of detection of the in situ hybridisation probes. This disparity suggests that not all hepcidin in the brain is transcribed in situ and may originate in part outside the brain. The properties of hepcidin as a cationic peptide hormone are reflected in the finding of hepcidin in the walls of blood vessels and in pericytes and glia, cells that may be involved in transporting the peptide into brain interstitium

    Transferrin and Cellular Iron Exchange

    No full text

    Interim assessment of liver damage in patients with sickle cell disease using new non-invasive techniques

    No full text
    We explored transient elastography (TE) and enhanced liver fibrosis (ELF(™)) score with standard markers of liver function to assess liver damage in 193 well patients with sickle cell disease (SCD). Patients with HbSS or HbSβ(0) thalassaemia (sickle cell anaemia, SCA; N=134), had significantly higher TE results and ELF scores than those with HbSC (N=49) disease (TE, 6.8 vs 5.3, p<0.0001 and ELF, 9.2 vs 8.6 p <0.0001). In SCA patients, TE and ELF correlated significantly with age and all serum liver function tests (LFTs). Additionally, (weak) positive correlation was found with lactate dehydrogenase (TE: r = 0.24, p=0.004; ELF: r = 0.26 p=0.002), and (weak) negative correlation with haemoglobin (TE: r= −0.25, p=0.002; ELF: r = −0.25 p=0.004). In HbSC patients, correlations were weaker or not significant between TE or ELF, and serum LFTs. All markers of iron loading correlated with TE values when corrected for sickle genotype (serum ferritin, β = 0.25, p <0.0001, total blood transfusion units, β = 0.25, p <0.0001 and LIC β = 0.32, p=0.046). The exploratory study suggests that, while TE could have a role, the utility of ELF score in monitoring liver damage in SCD, needs further longitudinal studies
    corecore