18,037 research outputs found

    Abstract Wiener measure using abelian Yang-Mills action on R4\mathbb{R}^4

    Full text link
    Let g\mathfrak{g} be the Lie algebra of a compact Lie group. For a g\mathfrak{g}-valued 1-form AA, consider the Yang-Mills action \begin{equation} S_{{\rm YM}}(A) = \int_{\mathbb{R}^4} \left|dA + A \wedge A \right|^2 \nonumber \end{equation} using the standard metric on TR4T\mathbb{R}^4. When we consider the Lie group U(1)U(1), the Lie algebra g\mathfrak{g} is isomorphic to RβŠ—i\mathbb{R} \otimes i, thus A∧A=0A \wedge A = 0. For some simple closed loop CC, we want to make sense of the following path integral, \begin{equation} \frac{1}{Z}\ \int_{A \in \mathcal{A} /\mathcal{G}} \exp \left[ \int_{C} A\right] e^{-\frac{1}{2}\int_{\mathbb{R}^4}|dA|^2}\ DA, \nonumber \end{equation} whereby DADA is some Lebesgue type of measure on the space of g\mathfrak{g}-valued 1-forms, modulo gauge transformations, A/G\mathcal{A} /\mathcal{G}, and ZZ is some partition function. We will construct an Abstract Wiener space for which we can define the above Yang-Mills path integral rigorously, using renormalization techniques found in lattice gauge theory. We will further show that the Area Law formula do not hold in the abelian Yang-Mills theory
    • …
    corecore