21 research outputs found
Development of tools for in silico drug discovery
El cribratge virtual és un mètode quimioinformàtic que consisteix en cribrar molècules bioactives de grans bases de dades de molècules petites. Això permet als investigadors d’estalviar-se el cost de provar experimentalment cents o milers de compostos candidats, reduïnt-ne el nombre fins a quantitats manejables. Per a la validació dels mètodes de cribratge virtual calen biblioteques de molècules cimbell. El programari DecoyFinder fou desenvolupat com a aplicació gràfica de fàcil ús per a la construcció de biblioteques de molècules cimbell, i fou posteriorment ampliat amb les troballes de recerca posterior sobre la construcció i rendiment de biblioteques de molècules cimbell.
El Protein Data Bank (PDB) és molt útil perquè proporciona estructures tridimensionals per a complexos proteïna-lligand, i per tant, informació sobre com interactuen. Pels mètodes de cribratge virtual que en depenen, n’és extremadament important la seva fiabilitat. El VHELIBS fou desenvolupat com a eina per a inspeccionar i identificar, fàcilment i intuitiva, les estructures fiables del PDB, basant-se en com de bo n’és l’encaix amb els seus corresponents mapes de densitat electrònica.
Mentre que el cribratge virtual prova de trobar noves molècules bioactives per determinades dianes, l’enfoc invers també s’empra: arran d’una molècula, cercar-ne dianes amb activitat biològica no documentada. Aquest cribratge invers és conegut en anglès com a “in silico target fishing”, o pesca de dianes “in silico”, i és especialment útil a l’àmbit de la reutilització de fàrmacs En començar aquesta tesi, no hi havia cap plataforma de “target fishing” de lliure accés, i tot i que durant els anys se n’han desenvolupat algunes, en tots els casos la seva predicció de bioactivitat és qualitativa. Per això es desenvolupà una plataforma pròpia de “target fishing” de lliure accés, amb la implementació d’un nou mètode que proporciona la primera predicció quantitativa de bioactivitat per aquest tipus de plataforma.El cribado virtual es un método quimioinformático que consiste en la criba de moléculas bioactivas de grandes bases de datos de moléculas pequeñas. Esto permite a los investigadores ahorrarse el coste de probar experimentalmente cientos o miles de compuestos candidatos, reduciéndolos hasta cantidades manejables. Para la validación de los métodos de cribado virtual hacen falta bibliotecas de moléculas señuelo. El software DecoyFinder fue desarrollado como aplicación gráfica de fácil uso para la construcción de bibliotecas de moléculas señuelo, y fue posteriormente ampliado con los hallazgos de investigación posterior sobre la construcción i rendimiento de bibliotecas de moléculas señuelo.
El Protein Data Bank (PDB) es muy útil porque proporciona estructuras tridimensionales para complejos proteina-ligando, y por tanto, información sobre como interactúan. Para los métodos de cribado virtual que dependen de ellas, es extremadamente importante su fiabilidad. VHELIBS fue desarrollado como herramienta para inspeccionar e identificar, fácil e intuitivamente, las estructuras fiables del PDB, basándose en como de bueno es su encaje con sus correspondientes mapas de densidad electrónica.
Mientras que el cribado virtual intenta encontrar nuevas moléculas bioactivas para determinadas dianas, el enfoque inverso también se utiliza: a partir de una molécula, buscar dianas donde presente actividad biológica no documentada. Este cribado inverso es conocido en inglés como “in silico target fishing”, o pesca de dianas “in silico”, y es especialmente útil en el ámbito de la reutilización de fármacos. Al comenzar esta tesis, no había ninguna plataforma de “target fishing” de libre acceso, y aunque durante los años se han desarrollado algunas, en todos los casos su predicción de bioactividad es cualitativa. Por eso se desarrolló una plataforma propia de “target fishing” de libre acceso, con la implementación de un nuevo método que proporciona la primera predicción cuantitativa de bioactividad para este tipo de plataforma.Virtual screening is a cheminformatics method that consists of screening large small-molecule databases for bioactive molecules. This enables the researcher to avoid the cost of experimentally testing hundreds or thousands of compounds by reducing the number of candidate molecules to be tested to manageable numbers. For their validation, virtual screening approaches need decoy molecule libraries. DecoyFinder was developed as an easy to use graphical application for decoy library building, and later updated after some research into decoy library building and their performance when used for 2D similarity approaches.
The Protein Data Bank (PDB) is very useful because it provides 3D structures for protein-ligand complexes and, therefore, information on how certain ligands bind and interact with their targets. For virtual screening apporaches relying on these structures, it is of the utmost importance that the data available on the PDB for the ligand and its binding site are reliable. VHELIBS was developed as a tool to easily and intuitively inspect and identify reliable PDB structures based on the goodness of fitting between ligands and binding sites and their corresponding electron density map.
While virtual screening aims to find new bioactive molecules for certain targets, the opposite approach is also used: starting from a given molecule, to search for a biological target for which it presents previously undocumented bioactivity. This reverse screening is known as in silico or computational target fishing or reverse pharmacognosy, and it is specially useful for drug repurposing or repositioning. When this thesis was started, there were no freely available target fishing platforms, but some have been developed during the years. However, they are qualitative in the nature of their activity prediction, and thus we set out to develop a freely accessible target fishing web service implementing a novel method which provides the first quantitative activity prediction: Anglerfish
Gut Microbiome and Small RNA Integrative-Omic Perspective of Meconium and Milk-FED Infant Stool Samples
The human gut microbiome plays an important role in health, and its initial development is conditioned by many factors, such as feeding. It has also been claimed that this colonization is guided by bacterial populations, the dynamic virome, and transkingdom interactions between host and microbial cells, partially mediated by epigenetic signaling. In this article, we characterized the bacteriome, virome, and smallRNome and their interaction in the meconium and stool samples from infants. Bacterial and viral DNA and RNA were extracted from the meconium and stool samples of 2- to 4-month-old milk-fed infants. The bacteriome, DNA and RNA virome, and smallRNome were assessed using 16S rRNA V4 sequencing, viral enrichment sequencing, and small RNA sequencing protocols, respectively. Data pathway analysis and integration were performed using the R package mixOmics. Our findings showed that the bacteriome differed among the three groups, while the virome and smallRNome presented significant differences, mainly between the meconium and stool of milk-fed infants. The gut environment is rapidly acquired after birth, and it is highly adaptable due to the interaction of environmental factors. Additionally, transkingdom interactions between viruses and bacteria can influence host and smallRNome profiles. However, virome characterization has several protocol limitations that must be considered
Prediction of Recurrent Mutations in SARS-CoV-2 Using Artificial Neural Networks
Predicting SARS-CoV-2 mutations is difficult, but predicting recurrent mutations driven by the host, such as those caused by host deaminases, is feasible. We used machine learning to predict which positions from the SARS-CoV-2 genome will hold a recurrent mutation and which mutations will be the most recurrent. We used data from April 2021 that we separated into three sets: a training set, a validation set, and an independent test set. For the test set, we obtained a specificity value of 0.69, a sensitivity value of 0.79, and an Area Under the Curve (AUC) of 0.8, showing that the prediction of recurrent SARS-CoV-2 mutations is feasible. Subsequently, we compared our predictions with updated data from January 2022, showing that some of the false positives in our prediction model become true positives later on. The most important variables detected by the model’s Shapley Additive exPlanation (SHAP) are the nucleotide that mutates and RNA reactivity. This is consistent with the SARS-CoV-2 mutational bias pattern and the preference of some host deaminases for specific sequences and RNA secondary structures. We extend our investigation by analyzing the mutations from the variants of concern Alpha, Beta, Delta, Gamma, and Omicron. Finally, we analyzed amino acid changes by looking at the predicted recurrent mutations in the M-pro and spike proteins
The Light and Dark Sides of Virtual Screening: What Is There to Know?
Virtual screening consists of using computational tools to predict potentially bioactive compounds from files containing large libraries of small molecules. Virtual screening is becoming increasingly popular in the field of drug discovery as in silico techniques are continuously being developed, improved, and made available. As most of these techniques are easy to use, both private and public organizations apply virtual screening methodologies to save resources in the laboratory. However, it is often the case that the techniques implemented in virtual screening workflows are restricted to those that the research team knows. Moreover, although the software is often easy to use, each methodology has a series of drawbacks that should be avoided so that false results or artifacts are not produced. Here, we review the most common methodologies used in virtual screening workflows in order to both introduce the inexperienced researcher to new methodologies and advise the experienced researcher on how to prevent common mistakes and the improper usage of virtual screening methodologies
Prediction of Novel Inhibitors of the Main Protease (M-pro) of SARS-CoV-2 through Consensus Docking and Drug Reposition
Since the outbreak of the COVID-19 pandemic in December 2019 and its rapid spread worldwide, the scientific community has been under pressure to react and make progress in the development of an effective treatment against the virus responsible for the disease. Here, we implement an original virtual screening (VS) protocol for repositioning approved drugs in order to predict which of them could inhibit the main protease of the virus (M-pro), a key target for antiviral drugs given its essential role in the virus’ replication. Two different libraries of approved drugs were docked against the structure of M-pro using Glide, FRED and AutoDock Vina, and only the equivalent high affinity binding modes predicted simultaneously by the three docking programs were considered to correspond to bioactive poses. In this way, we took advantage of the three sampling algorithms to generate hypothetic binding modes without relying on a single scoring function to rank the results. Seven possible SARS-CoV-2 M-pro inhibitors were predicted using this approach: Perampanel, Carprofen, Celecoxib, Alprazolam, Trovafloxacin, Sarafloxacin and ethyl biscoumacetate. Carprofen and Celecoxib have been selected by the COVID Moonshot initiative for in vitro testing; they show 3.97 and 11.90% M-pro inhibition at 50 µM, respectively