500 research outputs found
Beam Based Alignment of Interaction Region Magnets
In conventional beam based alignment (BBA) procedures, the relative alignment
of a quadrupole to a nearby beam position monitor is determined by finding a
beam position in the quadrupole at which the closed orbit does not change when
the quadrupole field is varied. The final focus magnets of the interaction
regions (IR) of circular colliders often have some specialized properties that
make it difficult to perform conventional beam based alignment procedures. At
the HERA interaction points, for example, these properties are: (a) The
quadrupoles are quite strong and long. Therefore a thin lens approximation is
quite imprecise. (b) The effects of angular magnet offsets become significant.
(c) The possibilities to steer the beam are limited as long as the alignment is
not within specifications. (d) The beam orbit has design offsets and design
angles with respect to the axis of the low-beta quadrupoles. (e) Often
quadrupoles do not have a beam position monitor in their vicinity. Here we
present a beam based alignment procedure that determines the relative offset of
the closed orbit from a quadrupole center without requiring large orbit changes
or monitors next to the quadrupole. Taking into account the alignment angle
allows us to reduce the sensitivity to optical errors by one to two orders of
magnitude. We also show how the BBA measurements of all IR quadrupoles can be
used to determine the global position of the magnets. The sensitivity to errors
of this method is evaluated and its applicability to HERA is shown
High-Gradient Test of a Tungsten-Iris X-Band Accelerator Structure at NLCTA
The CLIC study group at CERN has built two X-band accelerating structures to be tested at SLAC in NLCTA. The structures consist of copper cells with insert irises made out of molybdenum and tungsten, clamped together and installed in a vacuum tank. These structures are exactly scaled versions from structures tested previously at 30 GHz and with short pulses (16 ns) in the CLIC Test Facility at CERN. At 30 GHz these structures reached gradients of 150 MV/m for tungsten and 195 MV/m for molybdenum. These experiments were designed to provide data on the dependence of rf breakdown on pulse length and frequency. This paper reports in particular on the high-gradient test of the tungsten-iris structure. At the shortest possible pulse length of 22 ns a gradient of 125 MV/m was reached at X-band, 20 % lower than the 150 MV/m measured at 30 GHz in the CLIC Test Facility. The pulse length dependence and the dependence of the break down rate as a function of gradient were measured in detail. The results are compared to data obtained from the molybdenum-iris experiment at X-band which took place earlier as well as to 30 GHz data
- …
