34 research outputs found

    Transmission Electron Microscopy of Platelets FROM Apheresis and Buffy-Coat-Derived Platelet Concentrates

    Get PDF
    Platelet concentrates are produced in order to treat bleeding disorders. They can be provided by apheresis machines or by pooling of buffy coats from four blood donations. During their manufacturing and storage, morphological alterations of platelets occur which can be demonstrated by transmission electron microscopy. Alterations range from slight and reversible changes, such as formation of small cell protrusions and swelling of the surface-connected open canalicular system, to severe structural changes, where platelets undergo transitions from discoid to ameboid shapes as a consequence of platelet activation. These alterations end in delivery of the contents of platelet granules as well as platelet involution caused by apoptosis and necrosis processes denoted as the platelet release reaction. Hereby, the involvement of the network of the open canalicular system, helping to deliver the contents of platelet granules into the surrounding milieu via pores, is distinctly shown by electron tomography. As a consequence of platelet activation, a delivery of differently sized microparticles takes place which is thought to play an important role in the adverse reactions in some recipients of platelet concentrates. In this article, the formation and delivery of platelet microparticles is illustrated by electron tomography. Above all, the ultrastructural features of platelets and megakaryocytes are discussed in the context of the molecular characteristics of the plasma membrane and organelles including the different granules and the expression of receptors engaged in signaling during platelet activation. Starting from the knowledge of the ultrastructure of resting and activated platelets, a score classification is presented, allowing the evaluation of different activation stages in a reproducible manner. Examples of evaluations of platelet concentrates using electron microscopy are briefly reviewed. In the last part, experiments showing the interaction of platelets with bacteria are presented. Using the tracer ruthenium red, for staining of the plasma membrane and the open canalicular system of platelets as well as the bacterial wall, the ability of platelets to adhere and sequestrate bacteria by formation of small aggregates, but also to incorporate them into compartments of the open canalicular system which are separated from the surrounding milieu, was shown. In conclusion, electron microscopy is an appropriate tool for the investigation of the quality of platelet concentrates. It can efficiently support results on the functional state of platelets obtained by other methods such as flow cytometry and aggregometry

    Development of Myeloid Dendritic Cells under the Influence of Sexual Hormones Visualized using Scanning and Transmission Electron Microscopy

    Get PDF
    Dendritic cells (DCs) are antigen-presenting cells, which are mediated by MHC-class II molecules reacting with T-helper cells, eliciting a broad spectrum of immune reactions at cellular and humoral levels depending on their subtypes. DCs are also able to cross-present peptides from intracellular proteins as well as from intracellular pathogens via MHC-class I molecules by inducing MHC-class I–restricted cytotoxic T cells, which are also able to destroy cells undergoing malignant transformation. DCs originate from CD34+ hematopoietic stem cells but can also develop from monocytes. The local or systemic milieu of cytokines and steroid hormones significantly influences the generation of particular DC subtypes such as the classical myeloid DCs such as cDC1 and cDC2 as well as the plasmacytoid DCs. These subtypes are able to induce specific Th1- and Th17-dependent, Th2-dependent, or regulatory immune responses, respectively. Immature DCs take up extracellular pathogens that are presented by MHC molecules that are upregulated during maturation. Immature and mature DCs can be characterized by morphological and biochemical features that are outlined in this article. In addition, DCs are under control of sexual hormones. Estrogen receptor ligands are potent modulators of hemopoiesis and immune function in health and disease, influencing key cytokines promoting the maturation of DCs. DC differentiation is mainly regulated by binding of estradiol to ERα. Estrogen promotes the differentiation of immature DC subsets derived from bone marrow precursors or from myeloid progenitors. In contrast to estrogen, progesterone inhibits DC maturation, causing a decreased immunity in pregnancy or in postmenopausal women, where elevated levels of progesterone result in the production of Th2 cytokines. The influence of estrogen and progesterone on DC maturation has been demonstrated in own in vitro experiments using fluorescence microscopy and cell sorting and, above all, by visualization using SEM and TEM. At the end of this article, pits and falls concerning the treatment of malignancies with living DC vaccines are discussed

    Retrograde traffic in the biosynthetic-secretory route

    Get PDF
    In the biosynthetic-secretory route from the rough endoplasmic reticulum, across the pre-Golgi intermediate compartments, the Golgi apparatus stacks, trans Golgi network, and post-Golgi organelles, anterograde transport is accompanied and counterbalanced by retrograde traffic of both membranes and contents. In the physiologic dynamics of cells, retrograde flow is necessary for retrieval of molecules that escaped from their compartments of function, for keeping the compartments’ balances, and maintenance of the functional integrities of organelles and compartments along the secretory route, for repeated use of molecules, and molecule repair. Internalized molecules may be transported in retrograde direction along certain sections of the secretory route, and compartments and machineries of the secretory pathway may be misused by toxins. An important example is the toxin of Shigella dysenteriae, which has been shown to travel from the cell surface across endosomes, and the Golgi apparatus en route to the endoplasmic reticulum, and the cytosol, where it exerts its deleterious effects. Most importantly in medical research, knowledge about the retrograde cellular pathways is increasingly being utilized for the development of strategies for targeted delivery of drugs to the interior of cells. Multiple details about the molecular transport machineries involved in retrograde traffic are known; a high number of the molecular constituents have been characterized, and the complicated fine structural architectures of the compartments involved become more and more visible. However, multiple contradictions exist, and already established traffic models again are in question by contradictory results obtained with diverse cell systems, and/or different techniques. Additional problems arise by the fact that the conditions used in the experimental protocols frequently do not reflect the physiologic situations of the cells. Regular and pathologic situations often are intermingled, and experimental treatments by themselves change cell organizations. This review addresses physiologic and pathologic situations, tries to correlate results obtained by different cell biologic techniques, and asks questions, which may be the basis and starting point for further investigations

    Human endothelial progenitor cells internalize high-density lipoprotein.

    Get PDF
    Endothelial progenitor cells (EPCs) originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL), and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate), cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal intraellular pathway and accumulated prominently in all parts of the Golgi apparatus and in lipid droplets. Subsequently, also the RER and mitochondria were involved. These studies demonstrated the different intracellular pathway of HDL-derived bodipy-cholesterol and HDL-derived bodipy-cholesteryl oleate by EPCs, with concomitant

    FMNL2 and -3 regulate Golgi architecture and anterograde transport downstream of Cdc42

    Get PDF
    Abstract The Rho-family small GTPase Cdc42 localizes at plasma membrane and Golgi complex and aside from protrusion and migration operates in vesicle trafficking, endo- and exocytosis as well as establishment and/or maintenance of cell polarity. The formin family members FMNL2 and -3 are actin assembly factors established to regulate cell edge protrusion during migration and invasion. Here we report these formins to additionally accumulate and function at the Golgi apparatus. As opposed to lamellipodia, Golgi targeting of these proteins required both their N-terminal myristoylation and the interaction with Cdc42. Moreover, Golgi association of FMNL2 or -3 induced a phalloidin-detectable actin meshwork around the Golgi. Importantly, functional interference with FMNL2/3 formins by RNAi or CRISPR/Cas9-mediated gene deletion invariably induced Golgi fragmentation in different cell lines. Furthermore, absence of these proteins led to enlargement of endosomes as well as defective maturation and/or sorting into late endosomes and lysosomes. In line with Cdc42 - recently established to regulate anterograde transport through the Golgi by cargo sorting and carrier formation - FMNL2/3 depletion also affected anterograde trafficking of VSV-G from the Golgi to the plasma membrane. Our data thus link FMNL2/3 formins to actin assembly-dependent functions of Cdc42 in anterograde transport through the Golgi apparatus
    corecore