2 research outputs found

    Vehicle Blind Spot Monitoring Phenomenon Using Ultrasonic Sensor

    Get PDF
    This paper evaluates a conceptualization of Vehicle Blind Spot Monitoring System (VBMS), which performs a more effective approach in eliminating blind spot of the driver. The newly developed smart blind spot monitoring system simply focusing on an advancement of the preceding work, along with compromising user compatibility and cost-effectiveness. Compact design, reliable and low-cost that contributes to a highly affordable safety feature are the flagship of this new system. Components selection is the main role in constructing an inexpensive blind spot detection system in the present work. Thus, Arduino UNO R3 model and HC-SR04 ultrasonic sensors were employed for the VBMS system due to reasonable market price. Plus, the ultrasonic sensor has demonstrated a remarkable performance in the past blind spot detection system application. Concerning easy installation as well as maintenance on any vehicle, the VBMS is designed as a compact device which assembles the main control unit and sensory partsin a single body to be located at the bottom of the side mirror. Meanwhile, the hazard-warning signal is separately located at the passenger compartment for easily visible by the driver. The angle and sensing range of sensors are both adjustable but vital as their projections define the blind spot limit accurately by characterizing low to a high potential hazard. At the end of this work, a complete VBMS functional prototype of has been establish which effective for real traffic on-road experimentation, with various conditions specified (static, various speed, and overtaken). From the data collected, all targets of the present work have been attained regarding monitoring phenomenon shown by the new-built system. Both pros and cons of VBMS are discussed for further improvement ideas on product developmen

    Effect Of Hybridization On The Functional Properties Of AgMF–MWCNT-Filled Electrically Conductive Adhesive

    No full text
    A combination of metal and non-metal filler in an epoxy resin, called a hybrid electrically conductive adhesive (ECA), is an important development in the field of highly conductive electronic interconnect materials. Carbon nanotubes (CNTs) are well known for contributing strength and stiffness to ECA and silver (Ag) has been widely used as a conductive metal. This study presents the characterization of a hybrid silver micro-flake (AgMF) with multiwalled carbon nanotubes (MWCNT) in an epoxy matrix ECA, in terms of electrical and mechanical properties. The weight percentage of AgMF used was varied, from 1 wt.% to 10 wt.%, whereas the weight percentage of MWCNT filler loading was maintained at 5 wt.%. The properties of the hybrid ECA were characterized using a four-point probe and a universal testing machine for lap shear tests. It was found that the filler hybridization lowered the performance of the ECA in terms of both electrical and mechanical properties, as compared with non-hybrid MWCNT-filled ECA. This may be attributed to the weak interaction between micro- and nano-filler particle sizes and agglomeration of the MWCNT in the epoxy matrix in the hybrid ECA system. The hybrid ECA electrical conductivity was successfully enhanced when a low ratio of AgMF and MWCNT was considered. In addition, failure analysis confirmed that the hybrid ECA with less AgMF filler loading exhibits improved adhesion strength, suggesting a superior epoxy-to-substrate bonding interface
    corecore