1 research outputs found
Robustness of System-Filter Separation for the Feedback Control of a Quantum Harmonic Oscillator Undergoing Continuous Position Measurement
We consider the effects of experimental imperfections on the problem of
estimation-based feedback control of a trapped particle under continuous
position measurement. These limitations violate the assumption that the
estimator (i.e. filter) accurately models the underlying system, thus requiring
a separate analysis of the system and filter dynamics. We quantify the
parameter regimes for stable cooling, and show that the control scheme is
robust to detector inefficiency, time delay, technical noise, and miscalibrated
parameters. We apply these results to the specific context of a weakly
interacting Bose-Einstein condensate (BEC). Given that this system has
previously been shown to be less stable than a feedback-cooled BEC with strong
interatomic interactions, this result shows that reasonable experimental
imperfections do not limit the feasibility of cooling a BEC by continuous
measurement and feedback.Comment: 14 pages, 8 figure