589 research outputs found
Pinning down the kaon form factors in K^+ -> mu^+ nu_mu gamma decay
We find that the normal muon polarization in the decay K->mu nu_mu gamma is
very sensitive to the values of the kaon vector F_V and axial-vector F_A form
factors. It is shown that the ongoing KEK-E246 experiment can definitely
determine the signs of the sum of the form factors if their difference is fixed
from other considerations. This method can also verify the form factor values
and signs obtained from the K^+ -> l^+ nu_l e^+ e^- decays. A new experiment
with sensitivity to the normal and transverse muon polarizations of about 10^-4
will provide a unique possibility to determine the F_V and F_A values with a
few percent accuracy.Comment: revtex, 5 pages, 2 figures. Minor corrections made for the journal
version of the pape
Characteristics of Conservation Laws for Difference Equations
Each conservation law of a given partial differential equation is determined (up to equivalence) by a function known as the characteristic. This function is used to find conservation laws, to prove equivalence between conservation laws, and to prove the converse of Noether's Theorem. Transferring these results to difference equations is nontrivial, largely because difference operators are not derivations and do not obey the chain rule for derivatives. We show how these problems may be resolved and illustrate various uses of the characteristic. In particular, we establish the converse of Noether's Theorem for difference equations, we show (without taking a continuum limit) that the conservation laws in the infinite family generated by Rasin and Schiff are distinct, and we obtain all five-point conservation laws for the potential Lotka-Volterra equation
Iso-singlet Down Quark Mixing And CP Violation Experiments
We confront the new physics models with extra iso-singlet down quarks in the
new CP violation experimental era with and
measurements, events, and
limits. The closeness of the new experimental results to the standard
model theory requires us to include full SM amplitudes in the analysis. In
models allowing mixing to a new isosinglet down quark, as in E, flavor
changing neutral currents are induced that allow a mediated contribution
to mixing and which bring in new phases. In ,
, and plots we still find much
larger regions in the four down quark model than in the SM, reaching down to
, , , and down to zero, all at 1. We elucidate
the nature of the cancellation in an order four down quark mixing
matrix element which satisfies the experiments and reduces the number of
independent angles and phases. We also evaluate tests of unitarity for the
CKM submatrix.Comment: 14 pages, 16 figures, REVTeX
Fermionic massive modes along cosmic strings
The influence on cosmic string dynamics of fermionic massive bound states
propagating in the vortex, and getting their mass only from coupling to the
string forming Higgs field, is studied. Such massive fermionic currents are
numerically found to exist for a wide range of model parameters and seen to
modify drastically the usual string dynamics coming from the zero mode currents
alone. In particular, by means of a quantization procedure, a new equation of
state describing cosmic strings with any kind of fermionic current, massive or
massless, is derived and found to involve, at least, one state parameter per
trapped fermion species. This equation of state exhibits transitions from
subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for
publication in Phys. Rev.
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Equation of state of cosmic strings with fermionic current-carriers
The relevant characteristic features, including energy per unit length and
tension, of a cosmic string carrying massless fermionic currents in the
framework of the Witten model in the neutral limit are derived through
quantization of the spinor fields along the string. The construction of a Fock
space is performed by means of a separation between longitudinal modes and the
so-called transverse zero energy solutions of the Dirac equation in the vortex.
As a result, quantization leads to a set of naturally defined state parameters
which are the number densities of particles and anti-particles trapped in the
cosmic string. It is seen that the usual one-parameter formalism for describing
the macroscopic dynamics of current-carrying vortices is not sufficient in the
case of fermionic carriers.Comment: 30 pages, 15 figures, uses ReVTeX, equation of state corrected,
comments and references added. Accepted for publication in Phys. Rev.
Event Reconstruction in the PHENIX Central Arm Spectrometers
The central arm spectrometers for the PHENIX experiment at the Relativistic
Heavy Ion Collider have been designed for the optimization of particle
identification in relativistic heavy ion collisions. The spectrometers present
a challenging environment for event reconstruction due to a very high track
multiplicity in a complicated, focusing, magnetic field. In order to meet this
challenge, nine distinct detector types are integrated for charged particle
tracking, momentum reconstruction, and particle identification. The techniques
which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure
Cosmology, Particle Physics and Superfluid 3He
Many direct parallels connect superfluid 3He with the field theories
describing the physical vacuum, gauge fields and elementary fermions.
Superfluid He exhibits a variety of topological defects which can be
detected with single-defect sensitivity. Modern scenarios of defect-mediated
baryogenesis can be simulated by the interaction of the 3He vortices and domain
walls with fermionic quasiparticles. Formation of defects in a
symmetry-breaking phase transition in the early Universe, which could be
responsible for large-scale structure formation and for microwave-background
anisotropy, also may be modelled in the laboratory. This is supported by the
recent observation of vortex formation in neutron-irradiated 3He-B where the
"primordial fireball" is formed in an exothermic nuclear reaction.Comment: Invited talk at LT-21 Conference, 20 pages, 3 figures available at
request, compressed ps file of the camera-ready format with 3 figures is at
ftp://boojum.hut.fi/pub/publications/lowtemp/LTL-96006.ps.g
The Weak Charge of the Proton and New Physics
We address the physics implications of a precision determination of the weak
charge of the proton, QWP, from a parity violating elastic electron proton
scattering experiment to be performed at the Jefferson Laboratory. We present
the Standard Model (SM) expression for QWP including one-loop radiative
corrections, and discuss in detail the theoretical uncertainties and missing
higher order QCD corrections. Owing to a fortuitous cancellation, the value of
QWP is suppressed in the SM, making it a unique place to look for physics
beyond the SM. Examples include extra neutral gauge bosons, supersymmetry, and
leptoquarks. We argue that a QWP measurement will provide an important
complement to both high energy collider experiments and other low energy
electroweak measurements. The anticipated experimental precision requires the
knowledge of the order alpha_s corrections to the pure electroweak box
contributions. We compute these contributions for QWP, as well as for the weak
charges of heavy elements as determined from atomic parity violation.Comment: 22 pages of LaTeX, 5 figure
Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions
We review the most important experimental results from the first three years
of nucleus-nucleus collision studies at RHIC, with emphasis on results from the
STAR experiment, and we assess their interpretation and comparison to theory.
The theory-experiment comparison suggests that central Au+Au collisions at RHIC
produce dense, rapidly thermalizing matter characterized by: (1) initial energy
densities above the critical values predicted by lattice QCD for establishment
of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by
constituent interactions of very short mean free path, established most
probably at a stage preceding hadron formation; and (3) opacity to jets. Many
of the observations are consistent with models incorporating QGP formation in
the early collision stages, and have not found ready explanation in a hadronic
framework. However, the measurements themselves do not yet establish
unequivocal evidence for a transition to this new form of matter. The
theoretical treatment of the collision evolution, despite impressive successes,
invokes a suite of distinct models, degrees of freedom and assumptions of as
yet unknown quantitative consequence. We pose a set of important open
questions, and suggest additional measurements, at least some of which should
be addressed in order to establish a compelling basis to conclude definitively
that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.
- …