1 research outputs found
From interacting particle systems to random matrices
In this contribution we consider stochastic growth models in the
Kardar-Parisi-Zhang universality class in 1+1 dimension. We discuss the large
time distribution and processes and their dependence on the class on initial
condition. This means that the scaling exponents do not uniquely determine the
large time surface statistics, but one has to further divide into subclasses.
Some of the fluctuation laws were first discovered in random matrix models.
Moreover, the limit process for curved limit shape turned out to show up in a
dynamical version of hermitian random matrices, but this analogy does not
extend to the case of symmetric matrices. Therefore the connections between
growth models and random matrices is only partial.Comment: 18 pages, 8 figures; Contribution to StatPhys24 special issue; minor
corrections in scaling of section 2.