2,415 research outputs found

    Composite Skyrme Model with Vector Mesons

    Full text link
    We study the composite Skyrme model, proposed by Cheung and G\"{u}rsey, introducing vector mesons in a chiral Lagrangian. We calculate the static properties of baryons and compare with results obtained from models without vector mesons.Comment: LaTeX, 9 pages, 3 figures, to be published in Phys. Rev.

    Skyrmions and domain walls in (2+1) dimensions

    Get PDF
    We study classical solutions of the vector O(3) sigma model in (2+1) dimensions, spontaneously broken to O(2)xZ2. The model possesses Skyrmion-type solutions as well as stable domain walls which connect different vacua. We show that different types of waves can propagate on the wall, including waves carrying a topological charge. The domain wall can also absorb Skyrmions and, under appropriate initial conditions, it is possible to emit a Skyrmion from the wall.Comment: plain tex : 15 pages, 21 Postscript figures, uses epsf.te

    alpha^2 corrections to parapositronium decay: a detailed description

    Full text link
    We present details of our recent calculation of alpha^2 corrections to the parapositronium decay into two photons. These corrections are rather small and our final result for the parapositronium lifetime agrees well with the most recent measurement. Implications for orthopositronium decays are briefly discussed.Comment: 18 pages, late

    On the quantization of SU(3)-skyrmions

    Get PDF
    The quantization condition derived previously for SU(2) solitons quantized with SU(3)-collective coordinates is generalized for SU(3) skyrmions with strangeness content different from zero. Quantization of the dipole-type configuration with large strangeness content found recently is considered as an example.Comment: 7 pages, 2 figures (available by request

    Solitons in a Baby-Skyrme model with invariance under area preserving diffeomorphisms

    Full text link
    We study the properties of soliton solutions in an analog of the Skyrme model in 2+1 dimensions whose Lagrangian contains the Skyrme term and the mass term, but no usual kinetic term. The model admits a symmetry under area preserving diffeomorphisms. We solve the dynamical equations of motion analytically for the case of spinning isolated baryon type solitons. We take fully into account the induced deformation of the spinning Skyrmions and the consequent modification of its moment of inertia to give an analytical example of related numerical behaviour found by Piette et al.. We solve the equations of motion also for the case of an infinite, open string, and a closed annular string. In each case, the solitons are of finite extent, so called "compactons", being exactly the vacuum outside a compact region. We end with indications on the scattering of baby-Skyrmions, as well as some considerations as the properties of solitons on a curved space.Comment: 30 pages, 5 figures, revtex, major modifications, conclusions modifie

    The "recoil" correction of order mα6m \alpha^6 to hyperfine splitting of positronium ground state

    Full text link
    The "recoil" correction of order mα6m \alpha^6 to the hyperfine splitting of positronium ground state was found. The formalism employed is based on the noncovariant perturbation theory in QED. Equation for two-particle component of full (many-body) wave function is used, in which effective Hamiltonian depends on the energy of a system. The effective Hamiltonian is not restricted to the nonrelativistic region, so there is no need in any regularization. To evaluate integrals over loop momenta, they are divided into "hard" and "soft" parts, coming from large and small momenta respectively. Soft contributions were found analytically, and hard ones are evaluated by numerical integration. Some soft terms due to the retardation cancel each other. To calculate the "hard" contributions, a great number of noncovariant graphs is replaced by only a few covariant ones. The hard contribution was found in two ways. The first way is to evaluate contributions of separate graphs, using the Coulomb gauge. The second one is to calculate full hard contribution as a whole using the Feynman gauge. The final result for the "recoil" correction is 0.381(6) m\al^6 and agrees with those of previous papers. Diagram-to-diagram comparison with the revised results of Adkins&Sapirstein was done. All the results agree, so the "recoil" correction is now firmly established. This means a considerable disagreement with the experimental data.Comment: 28 pages, latex including latex figure

    Stability and Representation Dependence of the Quantum Skyrmion

    Get PDF
    A constructive realization of Skyrme's conjecture that an effective pion mass ``may arise as a self consistent quantal effect'' based on an ab initio quantum treatment of the Skyrme model is presented. In this quantum mechanical Skyrme model the spectrum of states with I=JI=J, which appears in the collective quantization, terminates without any infinite tower of unphysical states. The termination point depends on the model parameters and the dimension of the SU(2) representation. Representations, in which the nucleon and Δ33\Delta_{33} resonance are the only stable states, exist. The model is developed for both irreducible and reducible representations of general dimension. States with spin larger than 1/2 are shown to be deformed. The representation dependence of the baryon observables is illustrated numerically.Comment: 19 pages, Late

    Interactions of B = 4 Skyrmions

    Full text link
    It is known that the interactions of single Skyrmions are asymptotically described by a Yukawa dipole potential. Less is known about the interactions of solutions of the Skyrme model with higher baryon number. In this paper, it is shown that Yukawa multipole theory can be more generally applied to Skyrmion interactions, and in particular to the long-range dominant interactions of the B = 4 solution of the Skyrme model, which models the alpha-particle. A method that gives the quadrupole nature of the interaction a more intuitive meaning in the pion field colour picture is demonstrated. Numerical methods are employed to find the precise strength of quadrupole and octupole interactions. The results are applied to the B = 8 and B = 12 solutions and to the Skyrme crystal.Comment: 21 pages, 11 figure

    The Breathing Mode in Extended Skyrme Model

    Full text link
    We study an extended Skyrme model which includes fourth and sixth-order terms. We explore some static properties like the Δ\Delta-nucleon mass splitting and investigate the Skyrmion breathing mode in the framework of the linear response theory. We find that the monopole response function has a pronounced peak located at \sim 400 MeV, which we identify to the Roper resonance N(1440)N(1440). As compared to the standard one, the extended Skyrme model provides a more accurate description of baryon properties.Comment: 12 pages of plain Latex and 3 figures (available from the authors), preprint IPNO/TH 93-0

    Cosmological perturbations on local systems

    Get PDF
    We study the effect of cosmological expansion on orbits--galactic, planetary, or atomic--subject to an inverse-square force law. We obtain the laws of motion for gravitational or electrical interactions from general relativity--in particular, we find the gravitational field of a mass distribution in an expanding universe by applying perturbation theory to the Robertson-Walker metric. Cosmological expansion induces an (a¨/a)r\ddot a/a) \vec r force where a(t)a(t) is the cosmological scale factor. In a locally Newtonian framework, we show that the (a¨/a)r(\ddot a/a) \vec r term represents the effect of a continuous distribution of cosmological material in Hubble flow, and that the total force on an object, due to the cosmological material plus the matter perturbation, can be represented as the negative gradient of a gravitational potential whose source is the material actually present. We also consider the effect on local dynamics of the cosmological constant. We calculate the perihelion precession of elliptical orbits due to the cosmological constant induced force, and work out a generalized virial relation applicable to gravitationally bound clusters.Comment: 10 page
    corecore