23 research outputs found

    Chronic and degenerative diseases Similarities and differences between the effects of EPA and DHA on markers of atherosclerosis in human subjects*

    Get PDF
    We have reviewed effects of long chain (LC) n-3 PUFA on markers of atherosclerosis in human subjects with a focus on individual effects of EPA and DHA. Initial results from epidemiological studies suggested that LC n-3 PUFA from fish oils (FO) reduced incidence of CVD; those results have been confirmed in interventional studies. Dietary intervention with n-3 PUFA decreased fasting and postprandial TAG, number of remnant-like chylomicron particles, large VLDL, and total and small dense LDL particles. It increased mean size of LDL particles by increasing number of large and decreasing those of small dense particles. With some exceptions, n-3 PUFA decreased blood pressure (BP) and heart rate (HR), flow-mediated dilation (FMD) and plasma concentrations of inflammatory markers. n-3 PUFA also decreased circulating adhesion molecules and intima-media thickness (IMT) in some but not other studies. For IMT, results varied with the sex and artery being examined. EPA effects on FMD are endothelial cell dependent, while those of DHA seem to be endothelial cell independent. Individually, both EPA and DHA decreased TAG and inflammatory markers, but only DHA decreased HR, BP and number of small dense LDL particles. Results varied because of dose and duration of n-3 PUFA, EPA:DHA, health status of subjects and other reasons. Future studies are needed to determine optimal doses of EPA and DHA individually, their synergistic, additive or antagonistic effects, and to understand underlying mechanisms. In conclusion, n-3 PUFA decreased several risk factors for atherosclerosis without any serious adverse effects

    A Review of the Health Benefits of Cherries

    Full text link
    Increased oxidative stress contributes to development and progression of several human chronic inflammatory diseases. Cherries are a rich source of polyphenols and vitamin C which have anti-oxidant and anti-inflammatory properties. Our aim is to summarize results from human studies regarding health benefits of both sweet and tart cherries, including products made from them (juice, powder, concentrate, capsules); all referred to as cherries here. We found 29 (tart 20, sweet 7, unspecified 2) published human studies which examined health benefits of consuming cherries. Most of these studies were less than 2 weeks of duration (range 5 h to 3 months) and served the equivalent of 45 to 270 cherries/day (anthocyanins 55–720 mg/day) in single or split doses. Two-thirds of these studies were randomized and placebo controlled. Consumption of cherries decreased markers for oxidative stress in 8/10 studies; inflammation in 11/16; exercise-induced muscle soreness and loss of strength in 8/9; blood pressure in 5/7; arthritis in 5/5, and improved sleep in 4/4. Cherries also decreased hemoglobin A1C (HbA1C), Very-low-density lipoprotein (VLDL) and triglycerides/high-density lipoprotein (TG/HDL) in diabetic women, and VLDL and TG/HDL in obese participants. These results suggest that consumption of sweet or tart cherries can promote health by preventing or decreasing oxidative stress and inflammation

    Emotion-Based Cognition in Mice Is Differentially Influenced by Dose and Chemical Form of Dietary Docosahexaenoic Acid

    Full text link
    Docosahexaenoic acid (DHA) is a major constituent, and primary omega-3 fatty acid, in the brain. Evidence suggests that DHA consumption may promote cognitive functioning and prevent cognitive decline, and these effects may be particularly relevant in the context of fear or stress. However, the potency and efficacy of dietary DHA may depend on the form of DHA (e.g., phospholipid; PL vs. triglyceride; TG). In this study, we compared in mice the effects of consuming PL and TG forms of DHA on associative, avoidance (fear) based learning and memory. Diets consisted of either no DHA or 1%, 2%, and 4% PL- or TG-DHA. After 4 weeks on the test diets (n = 12/group), we used the 3-day passive avoidance (PA) and elevated plus maze (EPM) to examine fear and fear-associated learning and memory. We found a significant (p < 0.05) diet by time interaction in the PA and EPM. Compared to the control and the 1% TG-DHA group, mice consuming the diet supplemented with 1% PL-DHA displayed a significantly greater latency by test day 2 in the 3-day PA. No differences in latency between any of the groups were observed during trials 1 and 3. Mice consuming the 2% PL-DHA diet spent significantly more time frequenting the open arms during the first minute, but not the last 4 min, of the test. Compared to all other groups, mice fed the 4% TG-DHA diet had increased spleen, liver, and visceral fat weight. Consumption of the lower dose PL-DHA may confer enhanced efficacy, particularly on fear-based learning behavior

    Emotion-Based Cognition in Mice Is Differentially Influenced by Dose and Chemical Form of Dietary Docosahexaenoic Acid

    Full text link
    Docosahexaenoic acid (DHA) is a major constituent, and primary omega-3 fatty acid, in the brain. Evidence suggests that DHA consumption may promote cognitive functioning and prevent cognitive decline, and these effects may be particularly relevant in the context of fear or stress. However, the potency and efficacy of dietary DHA may depend on the form of DHA (e.g., phospholipid; PL vs. triglyceride; TG). In this study, we compared in mice the effects of consuming PL and TG forms of DHA on associative, avoidance (fear) based learning and memory. Diets consisted of either no DHA or 1%, 2%, and 4% PL- or TG-DHA. After 4 weeks on the test diets (n = 12/group), we used the 3-day passive avoidance (PA) and elevated plus maze (EPM) to examine fear and fear-associated learning and memory. We found a significant (p < 0.05) diet by time interaction in the PA and EPM. Compared to the control and the 1% TG-DHA group, mice consuming the diet supplemented with 1% PL-DHA displayed a significantly greater latency by test day 2 in the 3-day PA. No differences in latency between any of the groups were observed during trials 1 and 3. Mice consuming the 2% PL-DHA diet spent significantly more time frequenting the open arms during the first minute, but not the last 4 min, of the test. Compared to all other groups, mice fed the 4% TG-DHA diet had increased spleen, liver, and visceral fat weight. Consumption of the lower dose PL-DHA may confer enhanced efficacy, particularly on fear-based learning behavior
    corecore