62 research outputs found
A transcriptional switch controls sex determination in <i>Plasmodium falciparum</i>
Sexual reproduction and meiotic sex are deeply rooted in the eukaryotic tree of life, but mechanisms determining sex or mating types are extremely varied and are only well characterized in a few model organisms(1). In malaria parasites, sexual reproduction coincides with transmission to the vector host. Sex determination is non-genetic, with each haploid parasite capable of producing either a male or a female gametocyte in the human host(2). The hierarchy of events and molecular mechanisms that trigger sex determination and maintenance of sexual identity are yet to be elucidated. Here we show that the male development 1 (md1) gene is both necessary and sufficient for male fate determination in the human malaria parasite Plasmodium falciparum. We show that Md1 has a dual function stemming from two separate domains: in sex determination through its N terminus and in male development from its conserved C-terminal LOTUS/OST-HTH domain. We further identify a bistable switch at the md1 locus, which is coupled with sex determination and ensures that the male-determining gene is not expressed in the female lineage. We describe one of only a few known non-genetic mechanisms of sex determination in a eukaryote and highlight Md1 as a potential target for interventions that block malaria transmission
Defining multiplicity of vector uptake in transfected Plasmodium parasites
Abstract: The recurrent emergence of drug resistance in Plasmodium falciparum increases the urgency to genetically validate drug resistance mechanisms and identify new targets. Reverse genetics have facilitated genome-scale knockout screens in Plasmodium berghei and Toxoplasma gondii, in which pooled transfections of multiple vectors were critical to increasing scale and throughput. These approaches have not yet been implemented in human malaria species such as P. falciparum and P. knowlesi, in part because the extent to which pooled transfections can be performed in these species remains to be evaluated. Here we use next-generation sequencing to quantitate uptake of a pool of 94 barcoded vectors. The distribution of vector acquisition allowed us to estimate the number of barcodes and DNA molecules taken up by the parasite population. Dilution cloning of P. falciparum transfectants showed that individual clones possess as many as seven episomal barcodes, revealing that an intake of multiple vectors is a frequent event despite the inefficient transfection efficiency. Transfection of three spectrally-distinct fluorescent reporters allowed us to evaluate different transfection methods and revealed that schizont-stage transfection limited the tendency for parasites to take up multiple vectors. In contrast to P. falciparum, we observed that the higher transfection efficiency of P. knowlesi resulted in near complete representation of the library. These findings have important implications for how reverse genetics can be scaled in culturable Plasmodium species
Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity
Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activityAntimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.The authors thank T.T. Diagana (Novartis Institute for Tropical Diseases, Singapore) for provision of the compounds, the Red Cross (Australia and the USA) for the provision of human blood for cell cultures, and G. Stevenson for assistance with the triaging of compounds following screening. The authors acknowledge the Bill and Melinda Gates Foundation (grant OPP1040399 to D.A.F. and V.M.A. and grant OPP1054480 to E.A.W. and D.A.F.), the National Institutes of Health (grant R01 AI103058 to E.A.W. and D.A.F., grant R01 AI50234 to D.A.F, and R01 AI110329 to T.J.E.), the Australian Research Council (LP120200557 to V.M.A.) and the Medicines for Malaria Venture for their continued support. P.E.F. and M.I.V. are supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER).info:eu-repo/semantics/publishedVersio
Oleic Acid Biosynthesis in Plasmodium falciparum: Characterization of the Stearoyl-CoA Desaturase and Investigation as a Potential Therapeutic Target
BACKGROUND:Plasmodium falciparum parasitization of erythrocytes causes a substantial increase in the levels of intracellular fatty acids, notably oleic acid. How parasites acquire this monounsaturated fatty acid has remained enigmatic. Here, we report on the biochemical and enzymatic characterization of stearoyl-CoA desaturase (SCD) in P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS:Metabolic labeling experiments allowed us to demonstrate the production of oleic acid from stearic acid both in lysates of parasites incubated with [(14)C]-stearoyl-CoA and in parasite-infected erythrocytes labeled with [(14)C]-stearic acid. Optimal SCD activity was detected in schizonts, the stage of maximal membrane synthesis. This activity correlated with a late trophozoite stage-specific induction of PFE0555w transcripts. PFE0555w harbors a typical SCD signature. Similar to mammalian SCDs, this protein was found to be associated with the endoplasmic reticulum, as determined with PFE0555w-GFP tagged transgenic P. falciparum. Importantly, these parasites exhibited increased rates of stearic to oleic acid conversion, providing additional evidence that PFE0555w encodes the plasmodial SCD (PfSCD). These findings prompted us to assess the activity of sterculic acid analogues, known to be specific Delta9-desaturase inhibitors. Methyl sterculate inhibited the synthesis of oleic acid both with parasite lysates and infected erythrocytes, most likely by targeting PfSCD. This compound exhibited significant, rapid and irreversible antimalarial activity against asexual blood stages. This parasiticidal effect was antagonized by oleic acid. CONCLUSION/SIGNIFICANCE:Our study provides evidence that parasite-mediated fatty acid modification is important for blood-stage survival and provides a new strategy to develop a novel antimalarial therapeutic based on the inhibition of PfSCD
A transcriptional switch controls sex determination in Plasmodium falciparum.
International audienceAbstract Sexual reproduction and meiotic sex are deeply rooted in the eukaryotic tree of life, but mechanisms determining sex or mating types are extremely varied and are only well characterized in a few model organisms 1 . In malaria parasites, sexual reproduction coincides with transmission to the vector host. Sex determination is non-genetic, with each haploid parasite capable of producing either a male or a female gametocyte in the human host 2 . The hierarchy of events and molecular mechanisms that trigger sex determination and maintenance of sexual identity are yet to be elucidated. Here we show that the male development 1 ( md1 ) gene is both necessary and sufficient for male fate determination in the human malaria parasite Plasmodium falciparum . We show that Md1 has a dual function stemming from two separate domains: in sex determination through its N terminus and in male development from its conserved C-terminal LOTUS/OST-HTH domain. We further identify a bistable switch at the md1 locus, which is coupled with sex determination and ensures that the male-determining gene is not expressed in the female lineage. We describe one of only a few known non-genetic mechanisms of sex determination in a eukaryote and highlight Md1 as a potential target for interventions that block malaria transmission
- …